Update
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
|
|
1 |
from threading import Thread
|
2 |
|
3 |
-
import torch
|
4 |
import gradio as gr
|
5 |
-
from transformers import AutoTokenizer, TextIteratorStreamer
|
6 |
from optimum.intel.openvino import OVModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
7 |
|
8 |
original_model_id = "declare-lab/flan-alpaca-xl"
|
9 |
original_model_id = "declare-lab/flan-alpaca-large"
|
@@ -12,13 +16,16 @@ model_id = f"helenai/{original_model_id.replace('/','-')}-ov"
|
|
12 |
model = OVModelForSeq2SeqLM.from_pretrained(model_id)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
|
|
|
15 |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
16 |
# Get the model and tokenizer, and tokenize the user text.
|
17 |
model_inputs = tokenizer([user_text], return_tensors="pt")
|
18 |
|
19 |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
20 |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
21 |
-
streamer = TextIteratorStreamer(
|
|
|
|
|
22 |
generate_kwargs = dict(
|
23 |
model_inputs,
|
24 |
streamer=streamer,
|
@@ -26,7 +33,7 @@ def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
|
26 |
do_sample=True,
|
27 |
top_p=top_p,
|
28 |
temperature=float(temperature),
|
29 |
-
top_k=top_k
|
30 |
)
|
31 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
32 |
t.start()
|
@@ -40,7 +47,7 @@ def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
|
40 |
|
41 |
|
42 |
def reset_textbox():
|
43 |
-
return gr.update(value=
|
44 |
|
45 |
|
46 |
with gr.Blocks() as demo:
|
@@ -59,26 +66,54 @@ with gr.Blocks() as demo:
|
|
59 |
with gr.Column(scale=4):
|
60 |
user_text = gr.Textbox(
|
61 |
placeholder="Write an email about an alpaca that likes flan",
|
62 |
-
label="User input"
|
63 |
)
|
64 |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
65 |
button_submit = gr.Button(value="Submit")
|
66 |
|
67 |
with gr.Column(scale=1):
|
68 |
max_new_tokens = gr.Slider(
|
69 |
-
minimum=1,
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
top_p = gr.Slider(
|
72 |
-
minimum=0.05,
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
top_k = gr.Slider(
|
75 |
-
minimum=1,
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
temperature = gr.Slider(
|
78 |
-
minimum=0.1,
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
80 |
|
81 |
-
user_text.submit(
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
|
|
|
1 |
+
import pprint
|
2 |
+
import subprocess
|
3 |
from threading import Thread
|
4 |
|
|
|
5 |
import gradio as gr
|
|
|
6 |
from optimum.intel.openvino import OVModelForSeq2SeqLM
|
7 |
+
from transformers import AutoTokenizer, TextIteratorStreamer
|
8 |
+
|
9 |
+
result = subprocess.run(["lscpu"], text=True, capture_output=True)
|
10 |
+
pprint.pprint(result.stdout)
|
11 |
|
12 |
original_model_id = "declare-lab/flan-alpaca-xl"
|
13 |
original_model_id = "declare-lab/flan-alpaca-large"
|
|
|
16 |
model = OVModelForSeq2SeqLM.from_pretrained(model_id)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
|
19 |
+
|
20 |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
21 |
# Get the model and tokenizer, and tokenize the user text.
|
22 |
model_inputs = tokenizer([user_text], return_tensors="pt")
|
23 |
|
24 |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
25 |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
26 |
+
streamer = TextIteratorStreamer(
|
27 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
28 |
+
)
|
29 |
generate_kwargs = dict(
|
30 |
model_inputs,
|
31 |
streamer=streamer,
|
|
|
33 |
do_sample=True,
|
34 |
top_p=top_p,
|
35 |
temperature=float(temperature),
|
36 |
+
top_k=top_k,
|
37 |
)
|
38 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
39 |
t.start()
|
|
|
47 |
|
48 |
|
49 |
def reset_textbox():
|
50 |
+
return gr.update(value="")
|
51 |
|
52 |
|
53 |
with gr.Blocks() as demo:
|
|
|
66 |
with gr.Column(scale=4):
|
67 |
user_text = gr.Textbox(
|
68 |
placeholder="Write an email about an alpaca that likes flan",
|
69 |
+
label="User input",
|
70 |
)
|
71 |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
72 |
button_submit = gr.Button(value="Submit")
|
73 |
|
74 |
with gr.Column(scale=1):
|
75 |
max_new_tokens = gr.Slider(
|
76 |
+
minimum=1,
|
77 |
+
maximum=1000,
|
78 |
+
value=250,
|
79 |
+
step=1,
|
80 |
+
interactive=True,
|
81 |
+
label="Max New Tokens",
|
82 |
)
|
83 |
top_p = gr.Slider(
|
84 |
+
minimum=0.05,
|
85 |
+
maximum=1.0,
|
86 |
+
value=0.95,
|
87 |
+
step=0.05,
|
88 |
+
interactive=True,
|
89 |
+
label="Top-p (nucleus sampling)",
|
90 |
)
|
91 |
top_k = gr.Slider(
|
92 |
+
minimum=1,
|
93 |
+
maximum=50,
|
94 |
+
value=50,
|
95 |
+
step=1,
|
96 |
+
interactive=True,
|
97 |
+
label="Top-k",
|
98 |
)
|
99 |
temperature = gr.Slider(
|
100 |
+
minimum=0.1,
|
101 |
+
maximum=5.0,
|
102 |
+
value=0.8,
|
103 |
+
step=0.1,
|
104 |
+
interactive=True,
|
105 |
+
label="Temperature",
|
106 |
)
|
107 |
|
108 |
+
user_text.submit(
|
109 |
+
run_generation,
|
110 |
+
[user_text, top_p, temperature, top_k, max_new_tokens],
|
111 |
+
model_output,
|
112 |
+
)
|
113 |
+
button_submit.click(
|
114 |
+
run_generation,
|
115 |
+
[user_text, top_p, temperature, top_k, max_new_tokens],
|
116 |
+
model_output,
|
117 |
+
)
|
118 |
|
119 |
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
|