import tensorflow as tf import gradio as gr # importing necessary libraries from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad") model = TFAutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad",return_dict=False) from transformers import pipeline nlp = pipeline("question-answering", model=model, tokenizer=tokenizer) context = "My name is Hema Raikhola, i am a data scientist and machine learning engineer." question = "what is my profession?" result = nlp(question = question, context=context) print(f"QUESTION: {question}") print(f"ANSWER: {result['answer']}") # creating the function def func(context, question): result = nlp(question = question, context=context) return result['answer'] example_1 = "(1) Hema and Aman are team members.They are working on a machine learning project" qst_1 = "who are the team members?" example_2 = "(2) Natural Language Processing (NLP) allows machines to break down and interpret human language. It's at the core of tools we use every day – from translation software, chatbots, spam filters, and search engines, to grammar correction software, voice assistants, and social media monitoring tools." qst_2 = "What is NLP used for?" from transformers import ViltProcessor, ViltForQuestionAnswering def getResult(query, image): # prepare image + question #image = Image.open(BytesIO(base64.b64decode(base64_encoded_image))) text = query processor = ViltProcessor.from_pretrained( "dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained( "dandelin/vilt-b32-finetuned-vqa") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) return model.config.id2label[idx] # creating the interface iface = gr.Interface(fn=getResult, inputs=[ "text", gr.Image(type="pil")], outputs="text") # creating the interface app = gr.Interface(fn=func, inputs = ['textbox', 'text'], outputs = gr.Textbox( lines=10), title = 'Question Answering bot', description = 'Input context and question, then get answers!', examples = [[example_1, qst_1], [example_2, qst_2]], theme = "darkhuggingface", Timeout =120, allow_flagging="manual", flagging_options=["incorrect", "ambiguous", "offensive", "other"], ).queue() # launching the app gr.TabbedInterface([iface,app],["Visual QA","Text QA"]).launch(auth = ('user','work'), auth_message = "Check your Login details sent to your email")