hema1 commited on
Commit
14c8c4d
1 Parent(s): 2e85f5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -1,9 +1,15 @@
1
  from haystack.nodes import TextConverter, PDFToTextConverter, DocxToTextConverter, PreProcessor
2
  import gradio as gr
 
 
 
 
 
 
3
  pdf_converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"])
4
  converted = pdf_converter.convert(file_path="statistics-for-machine-learning.pdf", meta
5
 
6
- from haystack.nodes import PreProcessor
7
  preprocessor = PreProcessor(
8
  split_by="word",
9
  split_length=200,
@@ -11,19 +17,16 @@ preprocessor = PreProcessor(
11
  )
12
  preprocessed = preprocessor.process(converted)
13
 
14
- from haystack.document_stores.faiss import FAISSDocumentStore
15
 
16
  document_store = FAISSDocumentStore(faiss_index_factory_str="Flat", return_embedding=True)
17
  document_store.delete_all_documents()
18
  document_store.write_documents(preprocessed)
19
 
20
- from haystack.nodes import DensePassageRetriever
21
- from haystack.nodes import FARMReader
22
  retriever = DensePassageRetriever(document_store=document_store)
23
  reader = FARMReader(model_name_or_path='deepset/roberta-base-squad2-distilled', use_gpu=False)
24
  document_store.update_embeddings(retriever)
25
 
26
- from haystack.pipelines import ExtractiveQAPipeline
27
  pipeline = ExtractiveQAPipeline(reader, retriever)
28
 
29
  questions = [ 'What is linear regression?',
 
1
  from haystack.nodes import TextConverter, PDFToTextConverter, DocxToTextConverter, PreProcessor
2
  import gradio as gr
3
+ from haystack.nodes import PreProcessor
4
+ from haystack.document_stores.faiss import FAISSDocumentStore
5
+ from haystack.nodes import DensePassageRetriever
6
+ from haystack.nodes import FARMReader
7
+ from haystack.pipelines import ExtractiveQAPipeline
8
+
9
  pdf_converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"])
10
  converted = pdf_converter.convert(file_path="statistics-for-machine-learning.pdf", meta
11
 
12
+
13
  preprocessor = PreProcessor(
14
  split_by="word",
15
  split_length=200,
 
17
  )
18
  preprocessed = preprocessor.process(converted)
19
 
 
20
 
21
  document_store = FAISSDocumentStore(faiss_index_factory_str="Flat", return_embedding=True)
22
  document_store.delete_all_documents()
23
  document_store.write_documents(preprocessed)
24
 
25
+
 
26
  retriever = DensePassageRetriever(document_store=document_store)
27
  reader = FARMReader(model_name_or_path='deepset/roberta-base-squad2-distilled', use_gpu=False)
28
  document_store.update_embeddings(retriever)
29
 
 
30
  pipeline = ExtractiveQAPipeline(reader, retriever)
31
 
32
  questions = [ 'What is linear regression?',