Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack.nodes import TextConverter, PDFToTextConverter, DocxToTextConverter, PreProcessor
|
2 |
+
import gradio as gr
|
3 |
+
pdf_converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"])
|
4 |
+
converted = pdf_converter.convert(file_path="statistics-for-machine-learning.pdf", meta
|
5 |
+
|
6 |
+
from haystack.nodes import PreProcessor
|
7 |
+
preprocessor = PreProcessor(
|
8 |
+
split_by="word",
|
9 |
+
split_length=200,
|
10 |
+
split_overlap=10,
|
11 |
+
)
|
12 |
+
preprocessed = preprocessor.process(converted)
|
13 |
+
|
14 |
+
from haystack.document_stores.faiss import FAISSDocumentStore
|
15 |
+
|
16 |
+
document_store = FAISSDocumentStore(faiss_index_factory_str="Flat", return_embedding=True)
|
17 |
+
document_store.delete_all_documents()
|
18 |
+
document_store.write_documents(preprocessed)
|
19 |
+
|
20 |
+
from haystack.nodes import DensePassageRetriever
|
21 |
+
from haystack.nodes import FARMReader
|
22 |
+
retriever = DensePassageRetriever(document_store=document_store)
|
23 |
+
reader = FARMReader(model_name_or_path='deepset/roberta-base-squad2-distilled', use_gpu=False)
|
24 |
+
document_store.update_embeddings(retriever)
|
25 |
+
|
26 |
+
from haystack.pipelines import ExtractiveQAPipeline
|
27 |
+
pipeline = ExtractiveQAPipeline(reader, retriever)
|
28 |
+
|
29 |
+
questions = [ 'What is linear regression?',
|
30 |
+
'What is machine learning?',
|
31 |
+
'What are the steps in machine learning model development and deployment?',
|
32 |
+
'What is classification?'
|
33 |
+
]
|
34 |
+
answers = []
|
35 |
+
for question in questions:
|
36 |
+
prediction = pipeline.run(query=question)
|
37 |
+
|
38 |
+
answers.append(prediction)
|
39 |
+
|
40 |
+
for answer in answers:
|
41 |
+
print('Q:', answer['query'])
|
42 |
+
print('A:', answer['answers'][0].answer)
|
43 |
+
print('Context: ', answer['answers'][0].context)
|
44 |
+
print('score: ',answer['answers'][0].score)
|
45 |
+
print('\n')
|
46 |
+
|
47 |
+
def correct(question):
|
48 |
+
prediction = pipeline.run(query=question)
|
49 |
+
|
50 |
+
return answers.append(prediction)
|
51 |
+
|
52 |
+
app_inputs = gr.inputs.File()
|
53 |
+
|
54 |
+
interface = gr.Interface(fn=correct,
|
55 |
+
inputs=[app_inputs,gr.inputs.Textbox(lines=10)],
|
56 |
+
outputs=gr.inputs.Textbox(lines=20),
|
57 |
+
title='PDF QA system')
|
58 |
+
interface.launch(share=True)
|