File size: 1,223 Bytes
f42556b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715962f
20b8056
f42556b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/roberta-base-squad2"

nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)

def chat(context, question):
  QA_input = {
      "question" : question,
      "context" : context
  }
  res = nlp(QA_input)

  return res['answer']

screen = gr.Interface(
    fn = chat,
    inputs = [gr.Textbox(lines = 8, placeholder = "Enter your context here πŸ‘‰"), gr.Textbox(lines = 2, placeholder = "Enter your question here πŸ‘‰")],
    outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon πŸš€"),
    title="Facilitating the QnA with roberta-base-squad2 πŸ‘©πŸ»β€πŸ’»πŸ““βœπŸ»πŸ’‘",
    description="This app aims to facilitate the simple QnA with the provided contextπŸ’‘",
    theme="soft",
    article = """### Disclaimer : This model is purely used for QnA. User is expected to paste the text from which they want the answer in context section. <br> &emsp;&emsp;&emsp;&emsp;&emsp;&emsp; Then paste the question in the question section. <br> &emsp;&emsp;&emsp;&emsp;&emsp;&emsp;     User will get the answer in the output section."""
    
)

screen.launch()