Spaces:
Runtime error
Runtime error
File size: 7,247 Bytes
03f2f12 b397e77 03f2f12 b397e77 03f2f12 2bf314c 03f2f12 2bf314c 03f2f12 2bf314c 03f2f12 2bf314c 03f2f12 2bf314c 03f2f12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
from gradio_pdf import PDF
from qdrant_client import models, QdrantClient
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# from langchain.llms import LlamaCpp
from langchain.vectorstores import Qdrant
from qdrant_client.http import models
# from langchain.llms import CTransformers
from ctransformers import AutoModelForCausalLM
# loading the embedding model -
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
print("embedding model loaded.............................")
print("####################################################")
# loading the LLM
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
print("loading the LLM......................................")
# llm = LlamaCpp(
# model_path="./llama-2-7b-chat.Q3_K_S.gguf",
# temperature = 0.2,
# n_ctx=2048,
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
# max_tokens = 500,
# callback_manager=callback_manager,
# verbose=True,
# )
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF",
model_file="llama-2-7b-chat.Q3_K_S.gguf",
model_type="llama",
temperature = 0.2,
repetition_penalty = 1.5,
max_new_tokens = 300,
)
print("LLM loaded........................................")
print("################################################################")
# def get_chunks(text):
# text_splitter = RecursiveCharacterTextSplitter(
# # seperator = "\n",
# chunk_size = 250,
# chunk_overlap = 50,
# length_function = len,
# )
# chunks = text_splitter.split_text(text)
# return chunks
# pdf_path = './100 Weird Facts About the Human Body.pdf'
# reader = PdfReader(pdf_path)
# text = ""
# num_of_pages = len(reader.pages)
# for page in range(num_of_pages):
# current_page = reader.pages[page]
# text += current_page.extract_text()
# chunks = get_chunks(text)
# print(chunks)
# print("Chunks are ready.....................................")
# print("######################################################")
# client = QdrantClient(path = "./db")
# print("db created................................................")
# print("#####################################################################")
# client.recreate_collection(
# collection_name="my_facts",
# vectors_config=models.VectorParams(
# size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
# distance=models.Distance.COSINE,
# ),
# )
# print("Collection created........................................")
# print("#########################################################")
# li = []
# for i in range(len(chunks)):
# li.append(i)
# dic = zip(li, chunks)
# dic= dict(dic)
# client.upload_records(
# collection_name="my_facts",
# records=[
# models.Record(
# id=idx,
# vector=encoder.encode(dic[idx]).tolist(),
# payload= {dic[idx][:5] : dic[idx]}
# ) for idx in dic.keys()
# ],
# )
# print("Records uploaded........................................")
# print("###########################################################")
def chat(file, question):
def get_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(
# seperator = "\n",
chunk_size = 250,
chunk_overlap = 50,
length_function = len,
)
chunks = text_splitter.split_text(text)
return chunks
pdf_path = file
reader = PdfReader(pdf_path)
text = ""
num_of_pages = len(reader.pages)
for page in range(num_of_pages):
current_page = reader.pages[page]
text += current_page.extract_text()
chunks = get_chunks(text)
print(chunks)
print("Chunks are ready.....................................")
print("######################################################")
client = QdrantClient(path = "./db")
print("db created................................................")
print("#####################################################################")
client.recreate_collection(
collection_name="my_facts",
vectors_config=models.VectorParams(
size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
distance=models.Distance.COSINE,
),
)
print("Collection created........................................")
print("#########################################################")
li = []
for i in range(len(chunks)):
li.append(i)
dic = zip(li, chunks)
dic= dict(dic)
client.upload_records(
collection_name="my_facts",
records=[
models.Record(
id=idx,
vector=encoder.encode(dic[idx]).tolist(),
payload= {dic[idx][:5] : dic[idx]}
) for idx in dic.keys()
],
)
print("Records uploaded........................................")
print("###########################################################")
hits = client.search(
collection_name="my_facts",
query_vector=encoder.encode(question).tolist(),
limit=3
)
context = []
for hit in hits:
context.append(list(hit.payload.values())[0])
context = context[0] + context[1] + context[2]
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
Read the given context before answering questions and think step by step. If you can not answer a user question based on
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
instruction = f"""
Context: {context}
User: {question}"""
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
print(prompt_template)
result = llm(prompt_template)
return result
screen = gr.Interface(
fn = chat,
inputs = [PDF(label="Upload a PDF", interactive=True), gr.Textbox(lines = 10, placeholder = "Enter your question here π")],
outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon π"),
title="Q&A with PDF π©π»βπ»πβπ»π‘",
description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπ‘",
theme="soft",
# examples=["Hello", "what is the speed of human nerve impulses?"],
)
screen.launch() |