File size: 7,247 Bytes
03f2f12
 
 
 
 
 
 
 
b397e77
03f2f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b397e77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03f2f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf314c
 
 
03f2f12
 
2bf314c
 
03f2f12
 
 
 
 
 
 
 
 
2bf314c
 
03f2f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf314c
 
03f2f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf314c
03f2f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
from gradio_pdf import PDF
from qdrant_client import models, QdrantClient
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# from langchain.llms import LlamaCpp
from langchain.vectorstores import Qdrant
from qdrant_client.http import models
# from langchain.llms import CTransformers
from ctransformers import AutoModelForCausalLM


# loading the embedding model - 

encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')

print("embedding model loaded.............................")
print("####################################################")

# loading the LLM 

callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

print("loading the LLM......................................")

# llm = LlamaCpp(
#     model_path="./llama-2-7b-chat.Q3_K_S.gguf",
#     temperature = 0.2,
#     n_ctx=2048,
#     f16_kv=True,  # MUST set to True, otherwise you will run into problem after a couple of calls
#     max_tokens = 500,
#     callback_manager=callback_manager,
#     verbose=True,
# )

llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF", 
                                           model_file="llama-2-7b-chat.Q3_K_S.gguf", 
                                           model_type="llama", 
                                           temperature = 0.2,
                                           repetition_penalty = 1.5,
                                           max_new_tokens = 300,
                                           )



print("LLM loaded........................................")
print("################################################################")

# def get_chunks(text):
#     text_splitter = RecursiveCharacterTextSplitter(
#         # seperator = "\n",
#         chunk_size = 250,
#         chunk_overlap = 50,
#         length_function = len,
#     )

#     chunks = text_splitter.split_text(text)
#     return chunks


# pdf_path = './100 Weird Facts About the Human Body.pdf'


# reader = PdfReader(pdf_path)
# text = ""
# num_of_pages = len(reader.pages)

# for page in range(num_of_pages):
#     current_page = reader.pages[page]
#     text += current_page.extract_text()


# chunks = get_chunks(text)
# print(chunks)
# print("Chunks are ready.....................................")
# print("######################################################")

# client = QdrantClient(path = "./db")
# print("db  created................................................")
# print("#####################################################################")

# client.recreate_collection(
#     collection_name="my_facts",
#     vectors_config=models.VectorParams(
#         size=encoder.get_sentence_embedding_dimension(),  # Vector size is defined by used model
#         distance=models.Distance.COSINE,
#     ),
# )

# print("Collection created........................................")
# print("#########################################################")



# li = []
# for i in range(len(chunks)):
#     li.append(i)
 
# dic = zip(li, chunks)
# dic= dict(dic)

# client.upload_records(
#     collection_name="my_facts",
#     records=[
#         models.Record(
#             id=idx,
#             vector=encoder.encode(dic[idx]).tolist(),
#             payload= {dic[idx][:5] : dic[idx]}
#         ) for idx in dic.keys()
#     ],
# )

# print("Records uploaded........................................")
# print("###########################################################")

def chat(file, question):
    def get_chunks(text):
        text_splitter = RecursiveCharacterTextSplitter(
            # seperator = "\n",
            chunk_size = 250,
            chunk_overlap = 50,
            length_function = len,
        )

        chunks = text_splitter.split_text(text)
        return chunks


    pdf_path = file


    reader = PdfReader(pdf_path)
    text = ""
    num_of_pages = len(reader.pages)

    for page in range(num_of_pages):
        current_page = reader.pages[page]
        text += current_page.extract_text()


    chunks = get_chunks(text)
    print(chunks)
    print("Chunks are ready.....................................")
    print("######################################################")

    client = QdrantClient(path = "./db")
    print("db  created................................................")
    print("#####################################################################")

    client.recreate_collection(
        collection_name="my_facts",
        vectors_config=models.VectorParams(
            size=encoder.get_sentence_embedding_dimension(),  # Vector size is defined by used model
            distance=models.Distance.COSINE,
        ),
    )

    print("Collection created........................................")
    print("#########################################################")



    li = []
    for i in range(len(chunks)):
        li.append(i)
 
    dic = zip(li, chunks)
    dic= dict(dic)

    client.upload_records(
        collection_name="my_facts",
        records=[
            models.Record(
                id=idx,
                vector=encoder.encode(dic[idx]).tolist(),
                payload= {dic[idx][:5] : dic[idx]}
            ) for idx in dic.keys()
        ],
    )

    print("Records uploaded........................................")
    print("###########################################################")


    hits = client.search(
        collection_name="my_facts",
        query_vector=encoder.encode(question).tolist(),
        limit=3
    )
    context = []
    for hit in hits:
      context.append(list(hit.payload.values())[0])
    
    context = context[0] + context[1] + context[2]

    system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
    Read the given context before answering questions and think step by step. If you can not answer a user question based on 
    the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""


    B_INST, E_INST = "[INST]", "[/INST]"

    B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

    SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS

    instruction = f""" 
    Context: {context}
    User: {question}"""

    prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
    print(prompt_template)
    result = llm(prompt_template)
    return result 


screen = gr.Interface(
    fn = chat,
    inputs = [PDF(label="Upload a PDF", interactive=True), gr.Textbox(lines = 10, placeholder = "Enter your question here πŸ‘‰")],
    outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon πŸš€"),
    title="Q&A with PDF πŸ‘©πŸ»β€πŸ’»πŸ““βœπŸ»πŸ’‘",
description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπŸ’‘",
    theme="soft",
    # examples=["Hello", "what is the speed of human nerve impulses?"],
)

screen.launch()