sczhou commited on
Commit
8df8af0
1 Parent(s): 1d65f43
Files changed (3) hide show
  1. .gitattributes +0 -31
  2. app.py +1 -1
  3. app_2.py +306 -0
.gitattributes DELETED
@@ -1,31 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.npy filter=lfs diff=lfs merge=lfs -text
13
- *.npz filter=lfs diff=lfs merge=lfs -text
14
- *.onnx filter=lfs diff=lfs merge=lfs -text
15
- *.ot filter=lfs diff=lfs merge=lfs -text
16
- *.parquet filter=lfs diff=lfs merge=lfs -text
17
- *.pickle filter=lfs diff=lfs merge=lfs -text
18
- *.pkl filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pt filter=lfs diff=lfs merge=lfs -text
21
- *.pth filter=lfs diff=lfs merge=lfs -text
22
- *.rar filter=lfs diff=lfs merge=lfs -text
23
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
24
- *.tar.* filter=lfs diff=lfs merge=lfs -text
25
- *.tflite filter=lfs diff=lfs merge=lfs -text
26
- *.tgz filter=lfs diff=lfs merge=lfs -text
27
- *.wasm filter=lfs diff=lfs merge=lfs -text
28
- *.xz filter=lfs diff=lfs merge=lfs -text
29
- *.zip filter=lfs diff=lfs merge=lfs -text
30
- *.zst filter=lfs diff=lfs merge=lfs -text
31
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -276,7 +276,7 @@ demo = gr.Interface(
276
  gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
277
  gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
278
  ], [
279
- gr.Image(type="numpy", label="Output")
280
  ],
281
  title=title,
282
  description=description,
 
276
  gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
277
  gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
278
  ], [
279
+ gr.Image(type="numpy", label="Output").style(height='auto')
280
  ],
281
  title=title,
282
  description=description,
app_2.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is used for deploying hugging face demo:
3
+ https://huggingface.co/spaces/sczhou/CodeFormer
4
+ """
5
+
6
+ import sys
7
+ sys.path.append('CodeFormer')
8
+ import os
9
+ import cv2
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import gradio as gr
13
+ from itertools import chain
14
+
15
+ from torchvision.transforms.functional import normalize
16
+
17
+ from basicsr.utils import imwrite, img2tensor, tensor2img
18
+ from basicsr.utils.download_util import load_file_from_url
19
+ from facelib.utils.face_restoration_helper import FaceRestoreHelper
20
+ from facelib.utils.misc import is_gray
21
+ from basicsr.archs.rrdbnet_arch import RRDBNet
22
+ from basicsr.utils.realesrgan_utils import RealESRGANer
23
+
24
+ from basicsr.utils.registry import ARCH_REGISTRY
25
+
26
+
27
+ os.system("pip freeze")
28
+
29
+ pretrain_model_url = {
30
+ 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
31
+ 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
32
+ 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
33
+ 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
34
+ }
35
+ # download weights
36
+ if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
37
+ load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
38
+ if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
39
+ load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
40
+ if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
41
+ load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
42
+ if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
43
+ load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
44
+
45
+ # download images
46
+ torch.hub.download_url_to_file(
47
+ 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
48
+ '01.png')
49
+ torch.hub.download_url_to_file(
50
+ 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
51
+ '02.jpg')
52
+ torch.hub.download_url_to_file(
53
+ 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
54
+ '03.jpg')
55
+ torch.hub.download_url_to_file(
56
+ 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
57
+ '04.jpg')
58
+ torch.hub.download_url_to_file(
59
+ 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
60
+ '05.jpg')
61
+
62
+ def imread(img_path):
63
+ img = cv2.imread(img_path)
64
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
65
+ return img
66
+
67
+ # set enhancer with RealESRGAN
68
+ def set_realesrgan():
69
+ half = True if torch.cuda.is_available() else False
70
+ model = RRDBNet(
71
+ num_in_ch=3,
72
+ num_out_ch=3,
73
+ num_feat=64,
74
+ num_block=23,
75
+ num_grow_ch=32,
76
+ scale=2,
77
+ )
78
+ upsampler = RealESRGANer(
79
+ scale=2,
80
+ model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
81
+ model=model,
82
+ tile=400,
83
+ tile_pad=40,
84
+ pre_pad=0,
85
+ half=half,
86
+ )
87
+ return upsampler
88
+
89
+ upsampler = set_realesrgan()
90
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
91
+ codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
92
+ dim_embd=512,
93
+ codebook_size=1024,
94
+ n_head=8,
95
+ n_layers=9,
96
+ connect_list=["32", "64", "128", "256"],
97
+ ).to(device)
98
+ ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
99
+ checkpoint = torch.load(ckpt_path)["params_ema"]
100
+ codeformer_net.load_state_dict(checkpoint)
101
+ codeformer_net.eval()
102
+
103
+ os.makedirs('output', exist_ok=True)
104
+
105
+ def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
106
+ """Run a single prediction on the model"""
107
+ try: # global try
108
+ # take the default setting for the demo
109
+ has_aligned = False
110
+ only_center_face = False
111
+ draw_box = False
112
+ detection_model = "retinaface_resnet50"
113
+ print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
114
+
115
+ if background_enhance is None: background_enhance = True
116
+ if face_upsample is None: face_upsample = True
117
+ if upscale is None: upscale = 2
118
+
119
+ img = cv2.imread(str(image), cv2.IMREAD_COLOR)
120
+ print('\timage size:', img.shape)
121
+
122
+ upscale = int(upscale) # convert type to int
123
+ if upscale > 4: # avoid memory exceeded due to too large upscale
124
+ upscale = 4
125
+ if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
126
+ upscale = 2
127
+ if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
128
+ upscale = 1
129
+ background_enhance = False
130
+ face_upsample = False
131
+
132
+ face_helper = FaceRestoreHelper(
133
+ upscale,
134
+ face_size=512,
135
+ crop_ratio=(1, 1),
136
+ det_model=detection_model,
137
+ save_ext="png",
138
+ use_parse=True,
139
+ device=device,
140
+ )
141
+ bg_upsampler = upsampler if background_enhance else None
142
+ face_upsampler = upsampler if face_upsample else None
143
+
144
+ if has_aligned:
145
+ # the input faces are already cropped and aligned
146
+ img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
147
+ face_helper.is_gray = is_gray(img, threshold=5)
148
+ if face_helper.is_gray:
149
+ print('\tgrayscale input: True')
150
+ face_helper.cropped_faces = [img]
151
+ else:
152
+ face_helper.read_image(img)
153
+ # get face landmarks for each face
154
+ num_det_faces = face_helper.get_face_landmarks_5(
155
+ only_center_face=only_center_face, resize=640, eye_dist_threshold=5
156
+ )
157
+ print(f'\tdetect {num_det_faces} faces')
158
+ # align and warp each face
159
+ face_helper.align_warp_face()
160
+
161
+ # face restoration for each cropped face
162
+ for idx, cropped_face in enumerate(face_helper.cropped_faces):
163
+ # prepare data
164
+ cropped_face_t = img2tensor(
165
+ cropped_face / 255.0, bgr2rgb=True, float32=True
166
+ )
167
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
168
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
169
+
170
+ try:
171
+ with torch.no_grad():
172
+ output = codeformer_net(
173
+ cropped_face_t, w=codeformer_fidelity, adain=True
174
+ )[0]
175
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
176
+ del output
177
+ torch.cuda.empty_cache()
178
+ except RuntimeError as error:
179
+ print(f"Failed inference for CodeFormer: {error}")
180
+ restored_face = tensor2img(
181
+ cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
182
+ )
183
+
184
+ restored_face = restored_face.astype("uint8")
185
+ face_helper.add_restored_face(restored_face)
186
+
187
+ # paste_back
188
+ if not has_aligned:
189
+ # upsample the background
190
+ if bg_upsampler is not None:
191
+ # Now only support RealESRGAN for upsampling background
192
+ bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
193
+ else:
194
+ bg_img = None
195
+ face_helper.get_inverse_affine(None)
196
+ # paste each restored face to the input image
197
+ if face_upsample and face_upsampler is not None:
198
+ restored_img = face_helper.paste_faces_to_input_image(
199
+ upsample_img=bg_img,
200
+ draw_box=draw_box,
201
+ face_upsampler=face_upsampler,
202
+ )
203
+ else:
204
+ restored_img = face_helper.paste_faces_to_input_image(
205
+ upsample_img=bg_img, draw_box=draw_box
206
+ )
207
+
208
+ # save restored img
209
+ save_path = f'output/out.png'
210
+ imwrite(restored_img, str(save_path))
211
+
212
+ restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
213
+ return restored_img
214
+ except Exception as error:
215
+ print('Global exception', error)
216
+ return None, None
217
+
218
+
219
+ title = "CodeFormer: Robust Face Restoration and Enhancement Network"
220
+
221
+ description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
222
+ <br>
223
+ <b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a><br>
224
+ 🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
225
+ 🤗 Try CodeFormer for improved stable-diffusion generation!<br>
226
+ """
227
+
228
+ article = r"""
229
+ If CodeFormer is helpful, please help to ⭐ the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks!
230
+ [![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer)
231
+
232
+ ---
233
+
234
+ 📝 **Citation**
235
+
236
+ If our work is useful for your research, please consider citing:
237
+ ```bibtex
238
+ @inproceedings{zhou2022codeformer,
239
+ author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
240
+ title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
241
+ booktitle = {NeurIPS},
242
+ year = {2022}
243
+ }
244
+ ```
245
+
246
+ 📋 **License**
247
+
248
+ This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
249
+ Redistribution and use for non-commercial purposes should follow this license.
250
+
251
+ 📧 **Contact**
252
+
253
+ If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
254
+
255
+ 🤗 **Find Me:**
256
+ <style type="text/css">
257
+ td {
258
+ padding-right: 0px !important;
259
+ }
260
+ </style>
261
+
262
+ <table>
263
+ <tr>
264
+ <td><a href="https://github.com/sczhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a></td>
265
+ <td><a href="https://twitter.com/ShangchenZhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a></td>
266
+ </tr>
267
+ </table>
268
+
269
+ <center><img src='https://api.infinitescript.com/badgen/count?name=sczhou/CodeFormer&ltext=Visitors&color=6dc9aa' alt='visitors'></center>
270
+ """
271
+
272
+ with gr.Blocks() as demo:
273
+ gr.Markdown(title)
274
+ gr.Markdown(description)
275
+ with gr.Box():
276
+ with gr.Column():
277
+ input_img = gr.Image(type="filepath", label="Input")
278
+ background_enhance = gr.Checkbox(value=True, label="Background_Enhance")
279
+ face_enhance = gr.Checkbox(value=True, label="Face_Upsample")
280
+ upscale_factor = gr.Number(value=2, label="Rescaling_Factor (up to 4)")
281
+ codeformer_fidelity = gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
282
+ submit = gr.Button('Enhance Image')
283
+ with gr.Column():
284
+ output_img = gr.Image(type="numpy", label="Output").style(height='auto')
285
+
286
+ inps = [input_img, background_enhance, face_enhance, upscale_factor, codeformer_fidelity]
287
+ submit.click(fn=inference, inputs=inps, outputs=[output_img])
288
+
289
+ ex = gr.Examples([
290
+ ['01.png', True, True, 2, 0.7],
291
+ ['02.jpg', True, True, 2, 0.7],
292
+ ['03.jpg', True, True, 2, 0.7],
293
+ ['04.jpg', True, True, 2, 0.1],
294
+ ['05.jpg', True, True, 2, 0.1]
295
+ ],
296
+ fn=inference,
297
+ inputs=inps,
298
+ outputs=[output_img],
299
+ cache_examples=True)
300
+
301
+ gr.Markdown(article)
302
+
303
+
304
+ DEBUG = os.getenv('DEBUG') == '1'
305
+ demo.queue(api_open=False, concurrency_count=2, max_size=10)
306
+ demo.launch(debug=DEBUG)