from transformers import pipeline import gradio as gr import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) pipelines = { 'small': pipeline('zero-shot-classification', model='MoritzLaurer/deberta-v3-xsmall-zeroshot-v1.1-all-33'), 'base': pipeline('zero-shot-classification', model='MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33'), 'large': pipeline('zero-shot-classification', model='MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33') } def infer(text, classes, multi_label, model_size): try: output = pipelines[model_size](text, classes, multi_label=multi_label) logger.info(f"Model size: {model_size}, Output: {output}") return dict(zip(output['labels'], output['scores'])) except Exception as e: logger.error(f"Error: {e}") return {} text_input = gr.Textbox(lines=5, placeholder='Once upon a time...', label='Text Source', show_label=True) class_input = gr.Textbox(value='positive, negative', label='Class Label', show_label=True, info='Use commas (,) to seperate classes') allow_multi_label = gr.Checkbox(value=True, label='Multiple True Classes') model_sizes = gr.Radio(choices=['small', 'base', 'large'], value='base', label='Model Sizes', show_label=True) app = gr.Interface(fn=infer, inputs=[text_input, class_input, allow_multi_label, model_sizes], outputs='label') app.launch()