# Utilities related to loading in and working with models/specific models from urllib.parse import urlparse import gradio as gr import torch from accelerate.commands.estimate import check_has_model, create_empty_model, estimate_training_usage from accelerate.utils import calculate_maximum_sizes, convert_bytes from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError DTYPE_MODIFIER = {"float32": 1, "float16/bfloat16": 2, "int8": 4, "int4": 8} def extract_from_url(name: str): "Checks if `name` is a URL, and if so converts it to a model name" is_url = False try: result = urlparse(name) is_url = all([result.scheme, result.netloc]) except Exception: is_url = False # Pass through if not a URL if not is_url: return name else: path = result.path return path[1:] def translate_llama(text): "Translates Llama-2 and CodeLlama to its hf counterpart" if not text.endswith("-hf"): return text + "-hf" return text def get_model(model_name: str, library: str, access_token: str): "Finds and grabs model from the Hub, and initializes on `meta`" if "meta-llama/Llama-2-" in model_name or "meta-llama/CodeLlama-" in model_name: model_name = translate_llama(model_name) if library == "auto": library = None model_name = extract_from_url(model_name) try: model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token) except GatedRepoError: raise gr.Error( f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. " ) except RepositoryNotFoundError: raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.") except ValueError: raise gr.Error( f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)" ) except (RuntimeError, OSError) as e: library = check_has_model(e) if library != "unknown": raise gr.Error( f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo." ) raise gr.Error( f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" ) except ImportError: # hacky way to check if it works with `trust_remote_code=False` model = create_empty_model( model_name, library_name=library, trust_remote_code=False, access_token=access_token ) except Exception as e: raise gr.Error( f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" ) return model def calculate_memory(model: torch.nn.Module, options: list): "Calculates the memory usage for a model init on `meta` device" total_size, largest_layer = calculate_maximum_sizes(model) data = [] for dtype in options: dtype_total_size = total_size dtype_largest_layer = largest_layer[0] modifier = DTYPE_MODIFIER[dtype] dtype_training_size = estimate_training_usage( dtype_total_size, dtype if dtype != "float16/bfloat16" else "float16" ) dtype_total_size /= modifier dtype_largest_layer /= modifier dtype_total_size = convert_bytes(dtype_total_size) dtype_largest_layer = convert_bytes(dtype_largest_layer) data.append( { "dtype": dtype, "Largest Layer or Residual Group": dtype_largest_layer, "Total Size": dtype_total_size, "Training using Adam (Peak vRAM)": dtype_training_size, } ) return data