import re from typing import Mapping, Optional, Any import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import snapshot_download from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from sentence_transformers import CrossEncoder from qa_engine import logger, Config from qa_engine.response import Response from qa_engine.mocks import MockLocalBinaryModel class HuggingFaceModel: model_id: str = None min_new_tokens: int = None max_new_tokens: int = None temperature: float = None top_k: int = None top_p: float = None do_sample: bool = None tokenizer: transformers.PreTrainedTokenizer = None model: transformers.PreTrainedModel = None def __init__(self, config: Config): super().__init__() self.model_id = config.question_answering_model_id self.min_new_tokens = config.min_new_tokens self.max_new_tokens = config.max_new_tokens self.temperature = config.temperature self.top_k = config.top_k self.top_p = config.top_p self.do_sample = config.do_sample self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.model = AutoModelForCausalLM.from_pretrained( self.model_id, torch_dtype=torch.float16, device_map="auto" ) def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str: tokenized_prompt = self.tokenizer( self.tokenizer.bos_token + prompt, return_tensors="pt" ).to(self.model.device) terminators = [ self.tokenizer.eos_token_id, self.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = self.model.generate( input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, min_new_tokens=self.min_new_tokens, max_new_tokens=self.max_new_tokens, eos_token_id=terminators ) response = outputs[0][tokenized_prompt.input_ids.shape[-1]:] decoded_response = self.tokenizer.decode(response, skip_special_tokens=True) return decoded_response @property def _identifying_params(self) -> Mapping[str, Any]: return {'name_of_model': self.model_id} @property def _llm_type(self) -> str: return self.model_id class QAEngine(): """ QAEngine class, used for generating answers to questions. """ def __init__(self, config: Config): super().__init__() self.config = config self.question_answering_model_id=config.question_answering_model_id self.embedding_model_id=config.embedding_model_id self.index_repo_id=config.index_repo_id self.prompt_template=config.prompt_template self.use_docs_for_context=config.use_docs_for_context self.num_relevant_docs=config.num_relevant_docs self.add_sources_to_response=config.add_sources_to_response self.use_messages_for_context=config.use_messages_in_context self.debug=config.debug self.first_stage_docs: int = 50 self.llm_model = self._get_model() if self.use_docs_for_context: logger.info(f'Downloading {self.index_repo_id}') snapshot_download( repo_id=self.index_repo_id, allow_patterns=['*.faiss', '*.pkl'], repo_type='dataset', local_dir='indexes/run/' ) logger.info('Loading embedding model') embed_instruction = 'Represent the Hugging Face library documentation' query_instruction = 'Query the most relevant piece of information from the Hugging Face documentation' embedding_model = HuggingFaceInstructEmbeddings( model_name=self.embedding_model_id, embed_instruction=embed_instruction, query_instruction=query_instruction ) logger.info('Loading index') self.knowledge_index = FAISS.load_local('./indexes/run/', embedding_model) self.reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2') def _get_model(self): if self.question_answering_model_id == 'mock': logger.warn('using mock model') return MockLocalBinaryModel() else: logger.info('using transformers pipeline model') return HuggingFaceModel(self.config) @staticmethod def _preprocess_input(question: str, context: str) -> str: if '?' not in question: question += '?' # llama3 chatQA specific messages = [ {"role": "user", "content": question} ] system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context." instruction = "Please give a full and complete answer for the question." for item in messages: if item['role'] == "user": ## only apply this instruction for the first user turn item['content'] = instruction + " " + item['content'] break conversation = '\n\n'.join([ "User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages ]) + "\n\nAssistant:" inputs = system + "\n\n" + context + "\n\n" + conversation return inputs @staticmethod def _postprocess_answer(answer: str) -> str: ''' Preprocess the answer by removing unnecessary sequences and stop sequences. ''' SEQUENCES_TO_REMOVE = [ 'Factually: ', 'Answer: ', '<>', '<>', '[INST]', '[/INST]', '', '', '', '', ] SEQUENCES_TO_STOP = [ 'User:', 'You:', 'Question:' ] CHARS_TO_DEDUPLICATE = [ '\n', '\t', ' ' ] for seq in SEQUENCES_TO_REMOVE: answer = answer.replace(seq, '') for seq in SEQUENCES_TO_STOP: if seq in answer: answer = answer[:answer.index(seq)] for char in CHARS_TO_DEDUPLICATE: answer = re.sub(f'{char}+', f'{char}', answer) answer = answer.strip() return answer def get_response(self, question: str, messages_context: str = '') -> Response: """ Generate an answer to the specified question. Args: question (str): The question to be answered. messages_context (str, optional): The context to be used for generating the answer. Defaults to ''. Returns: response (Response): The Response object containing the generated answer and the sources of information used to generate the response. """ response = Response() context = '' relevant_docs = '' if self.use_messages_for_context and messages_context: messages_context = f'\nPrevious questions and answers:\n{messages_context}' context += messages_context if self.use_docs_for_context: logger.info('Retriving documents') # messages context is used for better retrival retrival_query = messages_context + question relevant_docs = self.knowledge_index.similarity_search( query=retrival_query, k=self.first_stage_docs ) cross_encoding_predictions = self.reranker.predict( [(retrival_query, doc.page_content) for doc in relevant_docs] ) relevant_docs = [ doc for _, doc in sorted( zip(cross_encoding_predictions, relevant_docs), reverse=True, key = lambda x: x[0] ) ] relevant_docs = relevant_docs[:self.num_relevant_docs] context += '\nExtracted documents:\n' context += ''.join([doc.page_content for doc in relevant_docs]) metadata = [doc.metadata for doc in relevant_docs] response.set_sources(sources=[str(m['source']) for m in metadata]) logger.info('Running LLM chain') inputs = QAEngine._preprocess_input(question, context) answer = self.llm_model._call(inputs) answer_postprocessed = QAEngine._postprocess_answer(answer) response.set_answer(answer_postprocessed) logger.info('Received answer') if self.debug: logger.info('\n' + '=' * 100) sep = '\n' + '-' * 100 logger.info(f'question len: {len(question)} {sep}') logger.info(f'question: {question} {sep}') logger.info(f'answer len: {len(response.get_answer())} {sep}') logger.info(f'answer original: {answer} {sep}') logger.info(f'answer postprocessed: {response.get_answer()} {sep}') logger.info(f'{response.get_sources_as_text()} {sep}') logger.info(f'messages_contex: {messages_context} {sep}') logger.info(f'relevant_docs: {relevant_docs} {sep}') logger.info(f'context len: {len(context)} {sep}') logger.info(f'context: {context} {sep}') return response