clip-rsicd-demo / dashboard_text2image.py
hhe1ibeb's picture
Duplicate from sujitpal/clip-rsicd-demo
1768dbe
import matplotlib.pyplot as plt
import nmslib
import numpy as np
import os
import streamlit as st
from PIL import Image
from transformers import CLIPProcessor, FlaxCLIPModel
import utils
BASELINE_MODEL = "openai/clip-vit-base-patch32"
MODEL_PATH = "flax-community/clip-rsicd-v2"
IMAGE_VECTOR_FILE = "./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv"
IMAGES_DIR = "./images"
CAPTIONS_FILE = os.path.join(IMAGES_DIR, "test-captions.json")
def app():
filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
image2caption = utils.load_captions(CAPTIONS_FILE)
st.title("Retrieve Images given Text")
st.markdown("""
This demo shows the image to text retrieval capabilities of this model, i.e.,
given a text query, we use our fine-tuned CLIP model to project the text query
to the image/caption embedding space and search for nearby images (by
cosine similarity) in this space.
Our fine-tuned CLIP model was previously used to generate image vectors for
our demo, and NMSLib was used for fast vector access.
""")
suggested_query = [
"ships",
"school house",
"military installation",
"mountains",
"beaches",
"airports",
"lakes"
]
st.text("Some suggested queries to start you off with...")
col0, col1, col2, col3, col4, col5, col6 = st.columns(7)
# [1, 1.1, 1.3, 1.1, 1, 1, 1])
suggest_idx = -1
with col0:
if st.button(suggested_query[0]):
suggest_idx = 0
with col1:
if st.button(suggested_query[1]):
suggest_idx = 1
with col2:
if st.button(suggested_query[2]):
suggest_idx = 2
with col3:
if st.button(suggested_query[3]):
suggest_idx = 3
with col4:
if st.button(suggested_query[4]):
suggest_idx = 4
with col5:
if st.button(suggested_query[5]):
suggest_idx = 5
with col6:
if st.button(suggested_query[6]):
suggest_idx = 6
query = st.text_input("OR enter a text Query:")
query = suggested_query[suggest_idx] if suggest_idx > -1 else query
if st.button("Query") or suggest_idx > -1:
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
query_vec = model.get_text_features(**inputs)
query_vec = np.asarray(query_vec)
ids, distances = index.knnQuery(query_vec, k=10)
result_filenames = [filenames[id] for id in ids]
for rank, (result_filename, score) in enumerate(zip(result_filenames, distances)):
caption = "{:s} (score: {:.3f})".format(result_filename, 1.0 - score)
col1, col2, col3 = st.columns([2, 10, 10])
col1.markdown("{:d}.".format(rank + 1))
col2.image(Image.open(os.path.join(IMAGES_DIR, result_filename)),
caption=caption)
caption_text = []
for caption in image2caption[result_filename]:
caption_text.append("* {:s}\n".format(caption))
col3.markdown("".join(caption_text))
st.markdown("---")
suggest_idx = -1