SDXL-Lightning / app.py
hideosnes's picture
Create app.py
2091d9d verified
raw
history blame
11.7 kB
import cv2
import torch
import random
import tempfile
import numpy as np
from pathlib import Path
from diffusers import (
ControlNetModel,
StableDiffusionXLControlNetPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
import spaces
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from ip_adapter import IPAdapterXL
from safetensors.torch import load_file
snapshot_download(
repo_id="h94/IP-Adapter", allow_patterns="sdxl_models/*", local_dir="."
)
# CPU fallback & pipeline-definition
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# load models & scheduler (==>EULER) & CN (==>canny > test what's better!!!)
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
controlnet = ControlNEtModel.from_pretrained(
controlnet_path, use_safetensors=False, torch_dtype=torch.float16
).to(device)
# load SDXL lightning >> put Turbo here if fallback to Comfy @Litto
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet = controlnet,
torch_dtype=torch.float16,
variant="fp16",
add_watermark=False,
)to(device)
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="epsilon"
)
pipe.unet.load_state_dict(
load_file(
hf_hub_download(
"ByteDance/SDXL-Lightning", "sdxl_lightning_2step_unet.safetensors"
),
device="cuda",
)
)
# load ip-adapter with specific target blocks for style transfer and layout preservation. Should be better than Comfy! Test this!
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["up_blocks.0.attentions.1"]
)
# Resizing the input image
# OpenCV goes here!!!
# Test this with smaller side-no for faster infr
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w = (round(ratio * w) // base_pixel_number) * base_pixel_number
w = (round(ratio * h) // base_pixel_number) * base_pixel_number
nput_image.resize([w_resize_new, h_resize_new], mode)
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
np.array(input_image)
)
input_image = Image.fromarray(res)
return input_image
# expand example images for endpoints --> info an Johannes/Jascha what to expect
examples = [
[
"./assets/zeichnung1.jpg",
None,
"3D model, cute monster, test prompt",
1.0,
0.0,
],
[
"./assets/zeichnung2.jpg",
"./assets/guidance-target.jpg",
"3D model, cute, kawai, monster, another test prompt",
1.0,
0.6,
],
]
def run_for_examples(style_image, source_image, prompt, scale, control_scale):
return create_image(
image_pil=style_image,
input_image=source_image,
prompt=prompt,
n_prompt="text, watermark, low res, low quality, worst quality, deformed, blurry",
scale=scale,
control_scale=control_scale,
guidance_scale=0.0,
num_inference_steps=2,
seed=42,
target="Load only style blocks",
neg_content_prompt="",
neg_content_scale=0,
)
# Main function for image synthesis (input -> run_for_examples)
@spaces.GPU(enable_queue=True)
def create_image(
image_pil,
input_image,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
target="Load only style blocks",
neg_content_prompt=None,
neg_content_scale=0,
):
seed = random.randint(0, MAX_SEED) if seed == -1 else seed
if target == "Load original IP-Adapter":
# target_blocks=["blocks"] for original IP-Adapter
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]
)
elif target == "Load only style blocks":
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"],
)
elif target == "Load style+layout block":
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"],
)
if input_image is not None:
input_image = resize_img(input_image, max_side=1024)
cv_input_image = pil_to_cv2(input_image)
detected_map = cv2.Canny(cv_input_image, 50, 200)
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
else:
canny_map = Image.new("RGB", (1024, 1024), color=(255,255,255))
control_scale = 0
if float(control_scale) == 0:
canny_map = canny_map.resize((1024, 1024))
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
images = ip_model.generate(
pil_image_image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=1,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
)
image = images[0]
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True) # check what happens to imgs when this changes!!!
return Path(tmpfile.name)
def pil_to_cv2(image_pil):
image_np = np.array(image_pil)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
return image_cv2
# Gradio Description & Frontend Stuff for Space (remove this for Endpoint)
title = r"""
<h1 align="center">MewMewMew: Simsalabim!</h1>
"""
description = r"""
<b>Let's test this! ARM <3 GoldExtra</b><br>
<b>SDXL-Lightning && IP-Adapter</b>
"""
article = r"""
Ask Hidéo if something breaks: <a href="mailto:[email protected]">Hidéo's Mail</a>
"""
block = gr.Blocks()
with block:
#description
gr.Markdown(title)
gr.MArkdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row()
with gr.Column():
image_pil = gr.Image(label="Style Image", type="pil")
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
value="mewmewmew, kitty cats, unicorns, uWu",
)
scale = gr.Slider(
minimum=0, maximum=2.0, step=0.01, value=1.0, label="Maßstab // scale"
)
with gr.Accordion(open=False, label="Für Details erweitern!"):
target = gr.Radio(
[
"Load only style blocks",
"Load style+layout block",
"Load original IP-Adapter",
],
value="Load only style blocks",
label="Modus für IP-Adapter auswählen"
)
with gr.Column():
src_image_pil = gr.Image(
label="Guidance Image (optional)", type="pil"
)
control_scale = gr.Slider(
minimum=0, maximum=1.0, step=0.1, value=0.5,
label="ControlNet-Stärke // control_scale",
)
n_prompt = gr.Textbox(
label="Negative Prompts",
value=""text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
)
neg_content_prompt = gr.Textbox(
label="Negative Content Prompt (optional)", value=""
)
neg_content_scale = gr.Slider(
minimum=0,
maximum=1.0,
step=0.1,
value=0.5,
label="Negative Content Stärke // neg_content_scale"
)
guidance_scale = gr.Slider(
minimum=0,
maximum=10.0,
step=0.01,
value=0.0,
label="guidance-scale"
)
num_inference_steps = gr.Slider(
minimum=2,
maximum=50.0,
step=1.0,
value=2,
label="Anzahl der Inference Steps (optional) // num_inference_steps"
)
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
value=-1,
step=1,
label="Seed Value // -1 = random // Seed-Proof=True"
)
generate_button = gr.Button("Simsalabim")
with gr.Column():
generated_image = gr.Image(label="MewMewMagix uWu")
inputs = [
image_pil,
src_image_pil,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
seed,
target,
neg_content_prompt,
neg_content_scale,
]
outputs = [generated_image]
gr.on(
triggers=[
prompt.input,
generate_button.click,
guidance_scale.input,
scale.input,
control_scale.input,
seed.input,
],
fn=create_image,
inputs=inputs,
outputs=outputs,
show_progress="minimal",
show_api=False,
trigger_mode="always_last",
)
gr.Examples(
examples=examples,
inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=True,
)
gr.Markdown(article)
block.queue(api_open=False)
block.launch(show_api=False)