Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import tempfile
|
5 |
+
import numpy as np
|
6 |
+
from pathlib import Path
|
7 |
+
from diffusers import (
|
8 |
+
ControlNetModel,
|
9 |
+
StableDiffusionXLControlNetPipeline,
|
10 |
+
UNet2DConditionModel,
|
11 |
+
EulerDiscreteScheduler,
|
12 |
+
)
|
13 |
+
import spaces
|
14 |
+
import gradio as gr
|
15 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
16 |
+
from ip_adapter import IPAdapterXL
|
17 |
+
from safetensors.torch import load_file
|
18 |
+
|
19 |
+
snapshot_download(
|
20 |
+
repo_id="h94/IP-Adapter", allow_patterns="sdxl_models/*", local_dir="."
|
21 |
+
)
|
22 |
+
|
23 |
+
# CPU fallback & pipeline-definition
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
27 |
+
|
28 |
+
# load models & scheduler (==>EULER) & CN (==>canny > test what's better!!!)
|
29 |
+
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
30 |
+
image_encoder_path = "sdxl_models/image_encoder"
|
31 |
+
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
|
32 |
+
|
33 |
+
controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
|
34 |
+
controlnet = ControlNEtModel.from_pretrained(
|
35 |
+
controlnet_path, use_safetensors=False, torch_dtype=torch.float16
|
36 |
+
).to(device)
|
37 |
+
|
38 |
+
# load SDXL lightning >> put Turbo here if fallback to Comfy @Litto
|
39 |
+
|
40 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
41 |
+
base_model_path,
|
42 |
+
controlnet = controlnet,
|
43 |
+
torch_dtype=torch.float16,
|
44 |
+
variant="fp16",
|
45 |
+
add_watermark=False,
|
46 |
+
)to(device)
|
47 |
+
pipe.set_progress_bar_config(disable=True)
|
48 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
49 |
+
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="epsilon"
|
50 |
+
)
|
51 |
+
pipe.unet.load_state_dict(
|
52 |
+
load_file(
|
53 |
+
hf_hub_download(
|
54 |
+
"ByteDance/SDXL-Lightning", "sdxl_lightning_2step_unet.safetensors"
|
55 |
+
),
|
56 |
+
device="cuda",
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
# load ip-adapter with specific target blocks for style transfer and layout preservation. Should be better than Comfy! Test this!
|
61 |
+
# target_blocks=["block"] for original IP-Adapter
|
62 |
+
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
63 |
+
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
|
64 |
+
ip_model = IPAdapterXL(
|
65 |
+
pipe,
|
66 |
+
image_encoder_path,
|
67 |
+
ip_ckpt,
|
68 |
+
device,
|
69 |
+
target_blocks=["up_blocks.0.attentions.1"]
|
70 |
+
)
|
71 |
+
|
72 |
+
# Resizing the input image
|
73 |
+
# OpenCV goes here!!!
|
74 |
+
# Test this with smaller side-no for faster infr
|
75 |
+
|
76 |
+
def resize_img(
|
77 |
+
input_image,
|
78 |
+
max_side=1280,
|
79 |
+
min_side=1024,
|
80 |
+
size=None,
|
81 |
+
pad_to_max_side=False,
|
82 |
+
mode=Image.BILINEAR,
|
83 |
+
base_pixel_number=64,
|
84 |
+
):
|
85 |
+
w, h = input_image.size
|
86 |
+
if size is not None:
|
87 |
+
w_resize_new, h_resize_new = size
|
88 |
+
else:
|
89 |
+
ratio = min_side / min(h, w)
|
90 |
+
w, h = round(ratio * w), round(ratio * h)
|
91 |
+
ratio = max_side / max(h, w)
|
92 |
+
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
93 |
+
w = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
94 |
+
w = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
95 |
+
nput_image.resize([w_resize_new, h_resize_new], mode)
|
96 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
97 |
+
|
98 |
+
if pad_to_max_side:
|
99 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
100 |
+
offset_x = (max_side - w_resize_new) // 2
|
101 |
+
offset_y = (max_side - h_resize_new) // 2
|
102 |
+
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
|
103 |
+
np.array(input_image)
|
104 |
+
)
|
105 |
+
input_image = Image.fromarray(res)
|
106 |
+
return input_image
|
107 |
+
|
108 |
+
# expand example images for endpoints --> info an Johannes/Jascha what to expect
|
109 |
+
|
110 |
+
examples = [
|
111 |
+
[
|
112 |
+
"./assets/zeichnung1.jpg",
|
113 |
+
None,
|
114 |
+
"3D model, cute monster, test prompt",
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
],
|
118 |
+
[
|
119 |
+
"./assets/zeichnung2.jpg",
|
120 |
+
"./assets/guidance-target.jpg",
|
121 |
+
"3D model, cute, kawai, monster, another test prompt",
|
122 |
+
1.0,
|
123 |
+
0.6,
|
124 |
+
],
|
125 |
+
]
|
126 |
+
|
127 |
+
def run_for_examples(style_image, source_image, prompt, scale, control_scale):
|
128 |
+
return create_image(
|
129 |
+
image_pil=style_image,
|
130 |
+
input_image=source_image,
|
131 |
+
prompt=prompt,
|
132 |
+
n_prompt="text, watermark, low res, low quality, worst quality, deformed, blurry",
|
133 |
+
scale=scale,
|
134 |
+
control_scale=control_scale,
|
135 |
+
guidance_scale=0.0,
|
136 |
+
num_inference_steps=2,
|
137 |
+
seed=42,
|
138 |
+
target="Load only style blocks",
|
139 |
+
neg_content_prompt="",
|
140 |
+
neg_content_scale=0,
|
141 |
+
)
|
142 |
+
|
143 |
+
# Main function for image synthesis (input -> run_for_examples)
|
144 |
+
|
145 |
+
@spaces.GPU(enable_queue=True)
|
146 |
+
def create_image(
|
147 |
+
image_pil,
|
148 |
+
input_image,
|
149 |
+
prompt,
|
150 |
+
n_prompt,
|
151 |
+
scale,
|
152 |
+
control_scale,
|
153 |
+
guidance_scale,
|
154 |
+
num_inference_steps,
|
155 |
+
target="Load only style blocks",
|
156 |
+
neg_content_prompt=None,
|
157 |
+
neg_content_scale=0,
|
158 |
+
):
|
159 |
+
seed = random.randint(0, MAX_SEED) if seed == -1 else seed
|
160 |
+
if target == "Load original IP-Adapter":
|
161 |
+
# target_blocks=["blocks"] for original IP-Adapter
|
162 |
+
ip_model = IPAdapterXL(
|
163 |
+
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]
|
164 |
+
)
|
165 |
+
elif target == "Load only style blocks":
|
166 |
+
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
167 |
+
ip_model = IPAdapterXL(
|
168 |
+
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"],
|
169 |
+
)
|
170 |
+
elif target == "Load style+layout block":
|
171 |
+
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
|
172 |
+
ip_model = IPAdapterXL(
|
173 |
+
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"],
|
174 |
+
)
|
175 |
+
|
176 |
+
if input_image is not None:
|
177 |
+
input_image = resize_img(input_image, max_side=1024)
|
178 |
+
cv_input_image = pil_to_cv2(input_image)
|
179 |
+
detected_map = cv2.Canny(cv_input_image, 50, 200)
|
180 |
+
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
|
181 |
+
else:
|
182 |
+
canny_map = Image.new("RGB", (1024, 1024), color=(255,255,255))
|
183 |
+
control_scale = 0
|
184 |
+
|
185 |
+
if float(control_scale) == 0:
|
186 |
+
canny_map = canny_map.resize((1024, 1024))
|
187 |
+
|
188 |
+
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
|
189 |
+
images = ip_model.generate(
|
190 |
+
pil_image_image_pil,
|
191 |
+
prompt=prompt,
|
192 |
+
negative_prompt=n_prompt,
|
193 |
+
scale=scale,
|
194 |
+
guidance_scale=guidance_scale,
|
195 |
+
num_samples=1,
|
196 |
+
num_inference_steps=num_inference_steps,
|
197 |
+
seed=seed,
|
198 |
+
image=canny_map,
|
199 |
+
controlnet_conditioning_scale=float(control_scale),
|
200 |
+
)
|
201 |
+
image = images[0]
|
202 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
|
203 |
+
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True) # check what happens to imgs when this changes!!!
|
204 |
+
return Path(tmpfile.name)
|
205 |
+
|
206 |
+
def pil_to_cv2(image_pil):
|
207 |
+
image_np = np.array(image_pil)
|
208 |
+
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
209 |
+
return image_cv2
|
210 |
+
|
211 |
+
# Gradio Description & Frontend Stuff for Space (remove this for Endpoint)
|
212 |
+
title = r"""
|
213 |
+
<h1 align="center">MewMewMew: Simsalabim!</h1>
|
214 |
+
"""
|
215 |
+
|
216 |
+
description = r"""
|
217 |
+
<b>Let's test this! ARM <3 GoldExtra</b><br>
|
218 |
+
<b>SDXL-Lightning && IP-Adapter</b>
|
219 |
+
"""
|
220 |
+
|
221 |
+
article = r"""
|
222 |
+
Ask Hidéo if something breaks: <a href="mailto:[email protected]">Hidéo's Mail</a>
|
223 |
+
"""
|
224 |
+
|
225 |
+
block = gr.Blocks()
|
226 |
+
with block:
|
227 |
+
#description
|
228 |
+
gr.Markdown(title)
|
229 |
+
gr.MArkdown(description)
|
230 |
+
|
231 |
+
with gr.Tabs():
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column():
|
234 |
+
with gr.Row()
|
235 |
+
with gr.Column():
|
236 |
+
image_pil = gr.Image(label="Style Image", type="pil")
|
237 |
+
with gr.Column():
|
238 |
+
prompt = gr.Textbox(
|
239 |
+
label="Prompt",
|
240 |
+
value="mewmewmew, kitty cats, unicorns, uWu",
|
241 |
+
)
|
242 |
+
|
243 |
+
scale = gr.Slider(
|
244 |
+
minimum=0, maximum=2.0, step=0.01, value=1.0, label="Maßstab // scale"
|
245 |
+
)
|
246 |
+
with gr.Accordion(open=False, label="Für Details erweitern!"):
|
247 |
+
target = gr.Radio(
|
248 |
+
[
|
249 |
+
"Load only style blocks",
|
250 |
+
"Load style+layout block",
|
251 |
+
"Load original IP-Adapter",
|
252 |
+
],
|
253 |
+
value="Load only style blocks",
|
254 |
+
label="Modus für IP-Adapter auswählen"
|
255 |
+
)
|
256 |
+
|
257 |
+
with gr.Column():
|
258 |
+
src_image_pil = gr.Image(
|
259 |
+
label="Guidance Image (optional)", type="pil"
|
260 |
+
)
|
261 |
+
control_scale = gr.Slider(
|
262 |
+
minimum=0, maximum=1.0, step=0.1, value=0.5,
|
263 |
+
label="ControlNet-Stärke // control_scale",
|
264 |
+
)
|
265 |
+
n_prompt = gr.Textbox(
|
266 |
+
label="Negative Prompts",
|
267 |
+
value=""text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
|
268 |
+
)
|
269 |
+
neg_content_prompt = gr.Textbox(
|
270 |
+
label="Negative Content Prompt (optional)", value=""
|
271 |
+
)
|
272 |
+
neg_content_scale = gr.Slider(
|
273 |
+
minimum=0,
|
274 |
+
maximum=1.0,
|
275 |
+
step=0.1,
|
276 |
+
value=0.5,
|
277 |
+
label="Negative Content Stärke // neg_content_scale"
|
278 |
+
)
|
279 |
+
guidance_scale = gr.Slider(
|
280 |
+
minimum=0,
|
281 |
+
maximum=10.0,
|
282 |
+
step=0.01,
|
283 |
+
value=0.0,
|
284 |
+
label="guidance-scale"
|
285 |
+
)
|
286 |
+
num_inference_steps = gr.Slider(
|
287 |
+
minimum=2,
|
288 |
+
maximum=50.0,
|
289 |
+
step=1.0,
|
290 |
+
value=2,
|
291 |
+
label="Anzahl der Inference Steps (optional) // num_inference_steps"
|
292 |
+
)
|
293 |
+
seed = gr.Slider(
|
294 |
+
minimum=-1,
|
295 |
+
maximum=MAX_SEED,
|
296 |
+
value=-1,
|
297 |
+
step=1,
|
298 |
+
label="Seed Value // -1 = random // Seed-Proof=True"
|
299 |
+
)
|
300 |
+
|
301 |
+
generate_button = gr.Button("Simsalabim")
|
302 |
+
|
303 |
+
with gr.Column():
|
304 |
+
generated_image = gr.Image(label="MewMewMagix uWu")
|
305 |
+
|
306 |
+
inputs = [
|
307 |
+
image_pil,
|
308 |
+
src_image_pil,
|
309 |
+
prompt,
|
310 |
+
n_prompt,
|
311 |
+
scale,
|
312 |
+
control_scale,
|
313 |
+
guidance_scale,
|
314 |
+
num_inference_steps,
|
315 |
+
seed,
|
316 |
+
target,
|
317 |
+
neg_content_prompt,
|
318 |
+
neg_content_scale,
|
319 |
+
]
|
320 |
+
outputs = [generated_image]
|
321 |
+
|
322 |
+
gr.on(
|
323 |
+
triggers=[
|
324 |
+
prompt.input,
|
325 |
+
generate_button.click,
|
326 |
+
guidance_scale.input,
|
327 |
+
scale.input,
|
328 |
+
control_scale.input,
|
329 |
+
seed.input,
|
330 |
+
],
|
331 |
+
fn=create_image,
|
332 |
+
inputs=inputs,
|
333 |
+
outputs=outputs,
|
334 |
+
show_progress="minimal",
|
335 |
+
show_api=False,
|
336 |
+
trigger_mode="always_last",
|
337 |
+
)
|
338 |
+
|
339 |
+
gr.Examples(
|
340 |
+
examples=examples,
|
341 |
+
inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
|
342 |
+
fn=run_for_examples,
|
343 |
+
outputs=[generated_image],
|
344 |
+
cache_examples=True,
|
345 |
+
)
|
346 |
+
|
347 |
+
gr.Markdown(article)
|
348 |
+
|
349 |
+
block.queue(api_open=False)
|
350 |
+
block.launch(show_api=False)
|