hilamanor's picture
initial commit
e73da9c
raw
history blame
3.21 kB
import sys
import os
import torch
import librosa
from open_clip import create_model
from training.data import get_audio_features
from training.data import int16_to_float32, float32_to_int16
from transformers import RobertaTokenizer
tokenize = RobertaTokenizer.from_pretrained("roberta-base")
def tokenizer(text):
result = tokenize(
text,
padding="max_length",
truncation=True,
max_length=77,
return_tensors="pt",
)
return {k: v.squeeze(0) for k, v in result.items()}
PRETRAINED_PATH = "/mnt/fast/nobackup/users/hl01486/projects/contrastive_pretraining/CLAP/assets/checkpoints/epoch_top_0_audioset_no_fusion.pt"
WAVE_48k_PATH = "/mnt/fast/nobackup/users/hl01486/projects/contrastive_pretraining/CLAP/assets/audio/machine.wav"
def infer_text():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
precision = "fp32"
amodel = "HTSAT-tiny" # or 'PANN-14'
tmodel = "roberta" # the best text encoder in our training
enable_fusion = False # False if you do not want to use the fusion model
fusion_type = "aff_2d"
pretrained = PRETRAINED_PATH
model, model_cfg = create_model(
amodel,
tmodel,
pretrained,
precision=precision,
device=device,
enable_fusion=enable_fusion,
fusion_type=fusion_type,
)
# load the text, can be a list (i.e. batch size)
text_data = ["I love the contrastive learning", "I love the pretrain model"]
# tokenize for roberta, if you want to tokenize for another text encoder, please refer to data.py#L43-90
text_data = tokenizer(text_data)
text_embed = model.get_text_embedding(text_data)
print(text_embed.size())
def infer_audio():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
precision = "fp32"
amodel = "HTSAT-tiny" # or 'PANN-14'
tmodel = "roberta" # the best text encoder in our training
enable_fusion = False # False if you do not want to use the fusion model
fusion_type = "aff_2d"
pretrained = PRETRAINED_PATH
model, model_cfg = create_model(
amodel,
tmodel,
pretrained,
precision=precision,
device=device,
enable_fusion=enable_fusion,
fusion_type=fusion_type,
)
# load the waveform of the shape (T,), should resample to 48000
audio_waveform, sr = librosa.load(WAVE_48k_PATH, sr=48000)
# quantize
audio_waveform = int16_to_float32(float32_to_int16(audio_waveform))
audio_waveform = torch.from_numpy(audio_waveform).float()
audio_dict = {}
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
import ipdb
ipdb.set_trace()
audio_dict = get_audio_features(
audio_dict,
audio_waveform,
480000,
data_truncating="fusion",
data_filling="repeatpad",
audio_cfg=model_cfg["audio_cfg"],
)
# can send a list to the model, to process many audio tracks in one time (i.e. batch size)
audio_embed = model.get_audio_embedding([audio_dict])
print(audio_embed.size())
import ipdb
ipdb.set_trace()
if __name__ == "__main__":
infer_text()
infer_audio()