|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
|
|
import json |
|
import warnings |
|
from typing import Callable, List, NamedTuple, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from . import util |
|
from .body import Body, BodyResult, Keypoint |
|
from .face import Face |
|
from .hand import Hand |
|
|
|
HandResult = List[Keypoint] |
|
FaceResult = List[Keypoint] |
|
|
|
class PoseResult(NamedTuple): |
|
body: BodyResult |
|
left_hand: Union[HandResult, None] |
|
right_hand: Union[HandResult, None] |
|
face: Union[FaceResult, None] |
|
|
|
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True): |
|
""" |
|
Draw the detected poses on an empty canvas. |
|
|
|
Args: |
|
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses. |
|
H (int): The height of the canvas. |
|
W (int): The width of the canvas. |
|
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True. |
|
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True. |
|
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True. |
|
|
|
Returns: |
|
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses. |
|
""" |
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) |
|
|
|
for pose in poses: |
|
if draw_body: |
|
canvas = util.draw_bodypose(canvas, pose.body.keypoints) |
|
|
|
if draw_hand: |
|
canvas = util.draw_handpose(canvas, pose.left_hand) |
|
canvas = util.draw_handpose(canvas, pose.right_hand) |
|
|
|
if draw_face: |
|
canvas = util.draw_facepose(canvas, pose.face) |
|
|
|
return canvas |
|
|
|
|
|
class OpenposeDetector: |
|
""" |
|
A class for detecting human poses in images using the Openpose model. |
|
|
|
Attributes: |
|
model_dir (str): Path to the directory where the pose models are stored. |
|
""" |
|
def __init__(self, body_estimation, hand_estimation=None, face_estimation=None): |
|
self.body_estimation = body_estimation |
|
self.hand_estimation = hand_estimation |
|
self.face_estimation = face_estimation |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, hand_filename=None, face_filename=None, cache_dir=None, local_files_only=False): |
|
|
|
if pretrained_model_or_path == "lllyasviel/ControlNet": |
|
filename = filename or "annotator/ckpts/body_pose_model.pth" |
|
hand_filename = hand_filename or "annotator/ckpts/hand_pose_model.pth" |
|
face_filename = face_filename or "facenet.pth" |
|
|
|
face_pretrained_model_or_path = "lllyasviel/Annotators" |
|
else: |
|
filename = filename or "body_pose_model.pth" |
|
hand_filename = hand_filename or "hand_pose_model.pth" |
|
face_filename = face_filename or "facenet.pth" |
|
|
|
face_pretrained_model_or_path = pretrained_model_or_path |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
body_model_path = os.path.join(pretrained_model_or_path, filename) |
|
hand_model_path = os.path.join(pretrained_model_or_path, hand_filename) |
|
face_model_path = os.path.join(face_pretrained_model_or_path, face_filename) |
|
else: |
|
body_model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
hand_model_path = hf_hub_download(pretrained_model_or_path, hand_filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
face_model_path = hf_hub_download(face_pretrained_model_or_path, face_filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
body_estimation = Body(body_model_path) |
|
hand_estimation = Hand(hand_model_path) |
|
face_estimation = Face(face_model_path) |
|
|
|
return cls(body_estimation, hand_estimation, face_estimation) |
|
|
|
def to(self, device): |
|
self.body_estimation.to(device) |
|
self.hand_estimation.to(device) |
|
self.face_estimation.to(device) |
|
return self |
|
|
|
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]: |
|
left_hand = None |
|
right_hand = None |
|
H, W, _ = oriImg.shape |
|
for x, y, w, is_left in util.handDetect(body, oriImg): |
|
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32) |
|
if peaks.ndim == 2 and peaks.shape[1] == 2: |
|
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) |
|
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) |
|
|
|
hand_result = [ |
|
Keypoint(x=peak[0], y=peak[1]) |
|
for peak in peaks |
|
] |
|
|
|
if is_left: |
|
left_hand = hand_result |
|
else: |
|
right_hand = hand_result |
|
|
|
return left_hand, right_hand |
|
|
|
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]: |
|
face = util.faceDetect(body, oriImg) |
|
if face is None: |
|
return None |
|
|
|
x, y, w = face |
|
H, W, _ = oriImg.shape |
|
heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :]) |
|
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) |
|
if peaks.ndim == 2 and peaks.shape[1] == 2: |
|
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) |
|
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) |
|
return [ |
|
Keypoint(x=peak[0], y=peak[1]) |
|
for peak in peaks |
|
] |
|
|
|
return None |
|
|
|
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]: |
|
""" |
|
Detect poses in the given image. |
|
Args: |
|
oriImg (numpy.ndarray): The input image for pose detection. |
|
include_hand (bool, optional): Whether to include hand detection. Defaults to False. |
|
include_face (bool, optional): Whether to include face detection. Defaults to False. |
|
|
|
Returns: |
|
List[PoseResult]: A list of PoseResult objects containing the detected poses. |
|
""" |
|
oriImg = oriImg[:, :, ::-1].copy() |
|
H, W, C = oriImg.shape |
|
with torch.no_grad(): |
|
candidate, subset = self.body_estimation(oriImg) |
|
bodies = self.body_estimation.format_body_result(candidate, subset) |
|
|
|
results = [] |
|
for body in bodies: |
|
left_hand, right_hand, face = (None,) * 3 |
|
if include_hand: |
|
left_hand, right_hand = self.detect_hands(body, oriImg) |
|
if include_face: |
|
face = self.detect_face(body, oriImg) |
|
|
|
results.append(PoseResult(BodyResult( |
|
keypoints=[ |
|
Keypoint( |
|
x=keypoint.x / float(W), |
|
y=keypoint.y / float(H) |
|
) if keypoint is not None else None |
|
for keypoint in body.keypoints |
|
], |
|
total_score=body.total_score, |
|
total_parts=body.total_parts |
|
), left_hand, right_hand, face)) |
|
|
|
return results |
|
|
|
def __call__(self, input_image, detect_resolution=512, image_resolution=512, include_body=True, include_hand=False, include_face=False, hand_and_face=None, output_type="pil", **kwargs): |
|
if hand_and_face is not None: |
|
warnings.warn("hand_and_face is deprecated. Use include_hand and include_face instead.", DeprecationWarning) |
|
include_hand = hand_and_face |
|
include_face = hand_and_face |
|
|
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
H, W, C = input_image.shape |
|
|
|
poses = self.detect_poses(input_image, include_hand, include_face) |
|
canvas = draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face) |
|
|
|
detected_map = canvas |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|