|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from diffusers.utils import USE_PEFT_BACKEND |
|
from diffusers.models.lora import LoRALinearLayer |
|
|
|
|
|
|
|
|
|
|
|
class CacheAttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.cache = {} |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
|
|
self.cache["hidden_states"] = hidden_states |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class SAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, name, hidden_size, cross_attention_dim=None): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
super().__init__() |
|
|
|
self.name = name |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
cond_hidden_states=None, |
|
sa_hidden_states=None, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
|
|
if sa_hidden_states is not None: |
|
ref_hidden_states = sa_hidden_states[self.name] |
|
encoder_hidden_states = torch.cat([hidden_states, ref_hidden_states], dim=1) |
|
else: |
|
encoder_hidden_states = hidden_states |
|
|
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class CAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, name, hidden_size, cross_attention_dim=None): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
super().__init__() |
|
|
|
self.name = name |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
|
|
|
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
cond_hidden_states=None, |
|
sa_hidden_states=None, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
class RefLoraSAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, name, hidden_size, cross_attention_dim=None, scale=1.0, rank=128, network_alpha=None, lora_scale=1.0,): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
super().__init__() |
|
|
|
self.name = name |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.scale = scale |
|
|
|
self.rank = rank |
|
self.lora_scale = lora_scale |
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
num_images_per_prompt=1, |
|
cond_hidden_states=None, |
|
sa_hidden_states=None, |
|
|
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) + self.lora_scale * self.to_q_lora(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) + self.lora_scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states, *args) + self.lora_scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if sa_hidden_states is not None: |
|
ref_hidden_states = sa_hidden_states[self.name] |
|
|
|
ref_key = self.to_k_ref(ref_hidden_states) |
|
ref_value = self.to_v_ref(ref_hidden_states) |
|
ref_key = ref_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ref_value = ref_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ref_hidden_states = F.scaled_dot_product_attention( |
|
query, ref_key, ref_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
ref_hidden_states = ref_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ref_hidden_states = ref_hidden_states.to(query.dtype) |
|
hidden_states = hidden_states + ref_hidden_states * self.scale |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) + self.lora_scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
class RefSAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, name, hidden_size, cross_attention_dim=None, scale=1.0): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
super().__init__() |
|
|
|
self.name = name |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.scale = scale |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
scale: float = 1.0, |
|
num_images_per_prompt=1, |
|
cond_hidden_states=None, |
|
sa_hidden_states=None, |
|
|
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if sa_hidden_states is not None: |
|
ref_hidden_states = sa_hidden_states[self.name] |
|
|
|
ref_key = self.to_k_ref(ref_hidden_states) |
|
ref_value = self.to_v_ref(ref_hidden_states) |
|
ref_key = ref_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ref_value = ref_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ref_hidden_states = F.scaled_dot_product_attention( |
|
query, ref_key, ref_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
ref_hidden_states = ref_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ref_hidden_states = ref_hidden_states.to(query.dtype) |
|
hidden_states = hidden_states + ref_hidden_states * self.scale |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class IPAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
sa_hidden_states=None, |
|
scale: float = 1.0, |
|
): |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
if sa_hidden_states is not None: |
|
ref_hidden_states = sa_hidden_states[self.name] |
|
|
|
encoder_hidden_states = torch.cat([hidden_states, ref_hidden_states], dim=1) |
|
else: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
if end_pos != 89: |
|
encoder_hidden_states = encoder_hidden_states |
|
ip_hidden_states = None |
|
else: |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if ip_hidden_states is not None: |
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention( |
|
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
with torch.no_grad(): |
|
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) |
|
|
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
class LoRAIPAttnProcessor2_0(nn.Module): |
|
r""" |
|
Processor for implementing the LoRA attention mechanism. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the `encoder_hidden_states`. |
|
rank (`int`, defaults to 4): |
|
The dimension of the LoRA update matrices. |
|
network_alpha (`int`, *optional*): |
|
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, rank=128, network_alpha=None, lora_scale=1.0, scale=1.0, |
|
num_tokens=4): |
|
super().__init__() |
|
|
|
self.rank = rank |
|
self.lora_scale = lora_scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None, *args, |
|
**kwargs, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention( |
|
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |