feishen29 commited on
Commit
1ec9ef0
1 Parent(s): 3f81ee7

Upload 23 files

Browse files
app.py CHANGED
@@ -1,146 +1,397 @@
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
 
 
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
 
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
 
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
  with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
  with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
- demo.queue().launch()
 
1
+ import sys
2
+
3
+ sys.path.append('./')
4
+ from PIL import Image
5
  import gradio as gr
6
  import numpy as np
7
+ import cv2
8
+ from modelscope.outputs import OutputKeys
9
+ from modelscope.pipelines import pipeline
10
+ from modelscope.utils.constant import Tasks
11
+ from dressing_sd.pipelines.pipeline_sd import PipIpaControlNet
12
+ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
13
+
14
+ from torchvision import transforms
15
+ import cv2
16
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
17
+ import diffusers
18
+
19
+ from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
20
+ from adapter.attention_processor import CacheAttnProcessor2_0, RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, LoRAIPAttnProcessor2_0
21
+ from diffusers import ControlNetModel, UNet2DConditionModel, \
22
+ AutoencoderKL, DDIMScheduler
23
+ from adapter.resampler import Resampler
24
+
25
+ from transformers import (
26
+ CLIPImageProcessor,
27
+ CLIPVisionModelWithProjection,
28
+ CLIPTextModel,
29
+ CLIPTextModelWithProjection,
30
+ )
31
+ from diffusers import DDPMScheduler, AutoencoderKL, UniPCMultistepScheduler
32
+ from typing import List
33
+
34
  import torch
35
 
36
+ import argparse
37
+ import os
38
+
39
+ from controlnet_aux import OpenposeDetector
40
+ from insightface.app import FaceAnalysis
41
+ from insightface.utils import face_align
42
+
43
+
44
+ # device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
45
+
46
+ parser = argparse.ArgumentParser(description='ReferenceAdapter diffusion')
47
+ parser.add_argument('--if_resampler', type=bool, default=True)
48
+ parser.add_argument('--if_ipa', type=bool, default=True)
49
+ parser.add_argument('--if_control', type=bool, default=True)
50
+
51
+ parser.add_argument('--pretrained_model_name_or_path',
52
+ default="/home/sf/Realistic_Vision_V4.0_noVAE",
53
+ type=str)
54
+ parser.add_argument('--ip_ckpt',
55
+ default="/home/sf/ip_adapter/ip-adapter-faceid-plus_sd15.bin",
56
+ type=str)
57
+ parser.add_argument('--pretrained_image_encoder_path',
58
+ default="/home/sf/ip_adapter/image_encoder/",
59
+ type=str)
60
+ parser.add_argument('--pretrained_vae_model_path',
61
+ default="/home/sf/sd-vae-ft-mse/",
62
+ type=str)
63
+ parser.add_argument('--model_ckpt',
64
+ default="/home/sf/weights/sd_stage2/mp_rank_00_model_states_0628.pt",
65
+ type=str)
66
+ parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
67
+ parser.add_argument('--device', type=str, default="cuda:0")
68
+ args = parser.parse_args()
69
+
70
+ # svae path
71
+ output_path = args.output_path
72
+
73
+ if not os.path.exists(output_path):
74
+ os.makedirs(output_path)
75
+
76
+
77
+ generator = torch.Generator(device=args.device).manual_seed(42)
78
+ vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path).to(dtype=torch.float16, device=args.device)
79
+ tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
80
+ text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder").to(
81
+ dtype=torch.float16, device=args.device)
82
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_image_encoder_path).to(
83
+ dtype=torch.float16, device=args.device)
84
+ unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet").to(
85
+ dtype=torch.float16,device=args.device)
86
+
87
+ image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
88
 
89
+ #face_model
90
+ app = FaceAnalysis(providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
91
+ app.prepare(ctx_id=0, det_size=(640, 640))
 
 
 
 
 
92
 
93
+ # def ref proj weight
94
+ image_proj = Resampler(
95
+ dim=unet.config.cross_attention_dim,
96
+ depth=4,
97
+ dim_head=64,
98
+ heads=12,
99
+ num_queries=16,
100
+ embedding_dim=image_encoder.config.hidden_size,
101
+ output_dim=unet.config.cross_attention_dim,
102
+ ff_mult=4
103
+ )
104
+ image_proj = image_proj.to(dtype=torch.float16, device=args.device)
105
 
106
+ # set attention processor
107
+ attn_procs = {}
108
+ st = unet.state_dict()
109
+ for name in unet.attn_processors.keys():
110
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
111
+ if name.startswith("mid_block"):
112
+ hidden_size = unet.config.block_out_channels[-1]
113
+ elif name.startswith("up_blocks"):
114
+ block_id = int(name[len("up_blocks.")])
115
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
116
+ elif name.startswith("down_blocks"):
117
+ block_id = int(name[len("down_blocks.")])
118
+ hidden_size = unet.config.block_out_channels[block_id]
119
+ # lora_rank = hidden_size // 2 # args.lora_rank
120
+ if cross_attention_dim is None:
121
+ attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
122
+ else:
123
+ attn_procs[name] = LoRAIPAttnProcessor2_0(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
124
 
125
+ unet.set_attn_processor(attn_procs)
126
+ adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
127
+ adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
128
+ del st
129
+
130
+ ref_unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet").to(
131
+ dtype=torch.float16,
132
+ device=args.device)
133
+ ref_unet.set_attn_processor(
134
+ {name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
135
+
136
+ # weights load
137
+ model_sd = torch.load(args.model_ckpt, map_location="cpu")["module"]
138
+
139
+ ref_unet_dict = {}
140
+ unet_dict = {}
141
+ image_proj_dict = {}
142
+ adapter_modules_dict = {}
143
+ for k in model_sd.keys():
144
+ if k.startswith("ref_unet"):
145
+ ref_unet_dict[k.replace("ref_unet.", "")] = model_sd[k]
146
+ elif k.startswith("unet"):
147
+ unet_dict[k.replace("unet.", "")] = model_sd[k]
148
+ elif k.startswith("proj"):
149
+ image_proj_dict[k.replace("proj.", "")] = model_sd[k]
150
+ elif k.startswith("adapter_modules") and 'ref' in k:
151
+ adapter_modules_dict[k.replace("adapter_modules.", "")] = model_sd[k]
152
+ else:
153
+ print(k)
154
+
155
+ ref_unet.load_state_dict(ref_unet_dict)
156
+ image_proj.load_state_dict(image_proj_dict)
157
+ adapter_modules.load_state_dict(adapter_modules_dict, strict=False)
158
+
159
+ noise_scheduler = DDIMScheduler(
160
+ num_train_timesteps=1000,
161
+ beta_start=0.00085,
162
+ beta_end=0.012,
163
+ beta_schedule="scaled_linear",
164
+ clip_sample=False,
165
+ set_alpha_to_one=False,
166
+ steps_offset=1,
167
+ )
168
+ # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
169
+
170
+ control_net_openpose = ControlNetModel.from_pretrained(
171
+ "/home/sf/control_v11p_sd15_openpose",
172
+ torch_dtype=torch.float16).to(device=args.device)
173
+ # pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
174
+ # text_encoder=text_encoder, image_encoder=image_encoder,
175
+ # ip_ckpt=args.ip_ckpt,
176
+ # ImgProj=image_proj, controlnet=control_net_openpose,
177
+ # scheduler=noise_scheduler,
178
+ # safety_checker=StableDiffusionSafetyChecker,
179
+ # feature_extractor=CLIPImageProcessor)
180
+
181
+ img_transform = transforms.Compose([
182
+ transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
183
+ transforms.ToTensor(),
184
+ transforms.Normalize([0.5], [0.5]),
185
+ ])
186
+
187
+ openpose_model = OpenposeDetector.from_pretrained("/home/sf/ControlNet").to(args.device)
188
+
189
+ def resize_img(input_image, max_side=640, min_side=512, size=None,
190
+ pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
191
+ w, h = input_image.size
192
+ ratio = min_side / min(h, w)
193
+ w, h = round(ratio*w), round(ratio*h)
194
+ ratio = max_side / max(h, w)
195
+ input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
196
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
197
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
198
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
199
+ return input_image
200
+
201
+ def tryon_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
202
+ face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
203
+ # prompt = prompt + ', confident smile expression, fashion, best quality, amazing quality, very aesthetic'
204
+ if prompt is None:
205
+ prompt = "a photography of a model"
206
+ prompt = prompt + ', best quality, high quality'
207
+ print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
208
+ clip_image_processor = CLIPImageProcessor()
209
+ # clothes_img = garm_img.convert("RGB")
210
+ if not garm_img:
211
+ raise gr.Error("请上传衣服 / Please upload garment")
212
+ clothes_img = resize_img(garm_img)
213
+ vae_clothes = img_transform(clothes_img).unsqueeze(0)
214
+ # print(vae_clothes.shape)
215
+ ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
216
+
217
+ if if_ipa:
218
+ # image = cv2.imread(face_img)
219
+ faces = app.get(face_img)
220
 
221
+ if not faces:
222
+ raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
223
+ faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
224
+ face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
 
226
+ # face_img = face_image[:, :, ::-1]
227
+ # face_img = Image.fromarray(face_image.astype('uint8'))
228
+ # face_img.save('face.png')
 
 
 
 
 
 
 
 
229
 
230
+ face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
231
+ else:
232
+ faceid_embeds = None
233
+ face_clip_image = None
234
+
235
+ if if_control:
236
+ pose_img = openpose_model(pose_img.convert("RGB"))
237
+ # pose_img.save('pose.png')
238
+ pose_image = diffusers.utils.load_image(pose_img)
239
+ else:
240
+ pose_image = None
241
+ # print(if_ipa, if_control)
242
+ # pipe, generator = prepare_pipeline(args, if_ipa, if_control, unet, ref_unet, vae, tokenizer, text_encoder,
243
+ # image_encoder, image_proj, control_net_openpose)
244
+
245
+ noise_scheduler = DDIMScheduler(
246
+ num_train_timesteps=1000,
247
+ beta_start=0.00085,
248
+ beta_end=0.012,
249
+ beta_schedule="scaled_linear",
250
+ clip_sample=False,
251
+ set_alpha_to_one=False,
252
+ steps_offset=1,
253
+ )
254
+ # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
255
+ pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
256
+ text_encoder=text_encoder, image_encoder=image_encoder,
257
+ ip_ckpt=args.ip_ckpt,
258
+ ImgProj=image_proj, controlnet=control_net_openpose,
259
+ scheduler=noise_scheduler,
260
+ safety_checker=StableDiffusionSafetyChecker,
261
+ feature_extractor=CLIPImageProcessor)
262
+ output = pipe(
263
+ ref_image=vae_clothes,
264
+ prompt=prompt,
265
+ ref_clip_image=ref_clip_image,
266
+ pose_image=pose_image,
267
+ face_clip_image=face_clip_image,
268
+ faceid_embeds=faceid_embeds,
269
+ null_prompt='',
270
+ negative_prompt='bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality',
271
+ width=512,
272
+ height=640,
273
+ num_images_per_prompt=1,
274
+ guidance_scale=caption_guidance_scale,
275
+ image_scale=cloth_guidance_scale,
276
+ ipa_scale=face_guidance_scale,
277
+ s_lora_scale= self_guidance_scale,
278
+ c_lora_scale= cross_guidance_scale,
279
+ generator=generator,
280
+ num_inference_steps=denoise_steps,
281
+ ).images
282
+
283
+ if if_post and if_ipa:
284
+ # 将 PIL 图像转换为 NumPy 数组
285
+ output_array = np.array(output[0])
286
+ # 将 RGB 图像转换为 BGR 图像
287
+ bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
288
+ # 将 NumPy 数组转换为 PIL 图像
289
+ bgr_image = Image.fromarray(bgr_array)
290
+ result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
291
+ return result[OutputKeys.OUTPUT_IMG]
292
+ return output[0]
293
+
294
+ example_path = os.path.dirname(__file__)
295
+
296
+ garm_list = os.listdir(os.path.join(example_path, "cloth", 'cloth'))
297
+ garm_list_path = [os.path.join(example_path, "cloth", 'cloth', garm) for garm in garm_list]
298
+
299
+ face_list = os.listdir(os.path.join(example_path, "face", 'face'))
300
+ face_list_path = [os.path.join(example_path, "face", 'face', face) for face in face_list]
301
+
302
+ pose_list = os.listdir(os.path.join(example_path, "pose", 'pose'))
303
+ pose_list_path = [os.path.join(example_path, "pose", 'pose', pose) for pose in pose_list]
304
+
305
+
306
+
307
+ ##default human
308
+
309
+
310
+ image_blocks = gr.Blocks().queue()
311
+ with image_blocks as demo:
312
+ gr.Markdown("## IMAGDressing-v1: Customizable Virtual Dressing 👕👔👚")
313
+ gr.Markdown(
314
+ "Customize your virtual look with ease—adjust your appearance, pose, and garment as you like<br>."
315
+ "If you enjoy this project, please check out the [source codes](https://github.com/muzishen/IMAGDressing) and [model](https://huggingface.co/feishen29/IMAGDressing). Do not hesitate to give us a star. Thank you!<br>"
316
+ "Your support fuels the development of new versions."
317
+ )
318
+ with gr.Row():
319
+ with gr.Column():
320
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
321
+ example = gr.Examples(
322
+ inputs=garm_img,
323
+ examples_per_page=8,
324
+ examples=garm_list_path)
325
+
326
+ with gr.Column():
327
+ imgs = gr.Image(label="Face", sources='upload', type="numpy")
328
+
329
+ with gr.Row():
330
+ is_checked_face = gr.Checkbox(label="Yes", info="Use face ", value=False)
331
+ example = gr.Examples(
332
+ inputs=imgs,
333
+ examples_per_page=10,
334
+ examples=face_list_path
335
  )
 
 
 
336
  with gr.Row():
337
+ is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False)
338
+
339
+ with gr.Column():
340
+ pose_img = gr.Image(label="Pose", sources='upload', type="pil")
 
 
 
 
 
 
 
 
 
 
 
 
 
341
  with gr.Row():
342
+ is_checked_pose = gr.Checkbox(label="Yes", info="Use pose ", value=False)
343
+
344
+ example = gr.Examples(
345
+ inputs=pose_img,
346
+ examples_per_page=8,
347
+ examples=pose_list_path)
348
+
349
+ # with gr.Column():
350
+ # # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
351
+ # masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
352
+ with gr.Column():
353
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
354
+ image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
355
+ # Add usage tips below the output image
356
+ gr.Markdown("""
357
+ ### Usage Tips
358
+ - **Upload Images**: Upload your desired garment, face, and pose images in the respective sections.
359
+ - **Select Options**: Use the checkboxes to include face and pose in the generated output.
360
+ - **View Output**: The resulting image will be displayed in the Output section.
361
+ - **Examples**: Click on example images to quickly load and test different configurations.
362
+ - **Advanced Settings**: Click on **Advanced Settings** to edit captions and adjust hyperparameters.
363
+ - **Feedback**: If you have any issues or suggestions, please let us know through the [GitHub repository](https://github.com/muzishen/IMAGDressing).
364
+ """)
365
+ with gr.Column():
366
+ try_button = gr.Button(value="Dressing")
367
+ with gr.Accordion(label="Advanced Settings", open=False):
368
+ with gr.Row(elem_id="prompt-container"):
369
+ with gr.Row():
370
+ prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
371
+ show_label=False, elem_id="prompt")
372
+ # with gr.Row():
373
+ # neg_prompt = gr.Textbox(placeholder="Description of neg prompt ex) Short Sleeve Round Neck T-shirts",
374
+ # show_label=False, elem_id="neg_prompt")
375
+ with gr.Row():
376
+ cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.9, step=0.1,
377
+ visible=True)
378
+ with gr.Row():
379
+ caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=7.0, step=0.1,
380
+ visible=True)
381
+ with gr.Row():
382
+ face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
383
+ visible=True)
384
+ with gr.Row():
385
+ self_guidance_scale = gr.Slider(label="Self-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
386
+ visible=True)
387
+ with gr.Row():
388
+ cross_guidance_scale = gr.Slider(label="Cross-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
389
+ visible=True)
390
+ with gr.Row():
391
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=50, value=30, step=1)
392
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=20240508)
393
+
394
+ try_button.click(fn=tryon_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
395
+ outputs=[image_out], api_name='tryon')
396
 
397
+ image_blocks.launch(server_port=20021) # 指定固定端口
cloth/cloth/NAP_1647597315917349_in_post.png ADDED
cloth/cloth/NAP_1647597325621176_in_post.png ADDED
cloth/cloth/NAP_1647597325684024_in_post.png ADDED
cloth/cloth/NAP_1647597326026201_in_post.png ADDED
cloth/cloth/NAP_1647597326873307_in_post.png ADDED
cloth/cloth/NAP_1647597335012288_in_post.png ADDED
cloth/cloth/TPP_JVV1695795105796_in_post.png ADDED
cloth/cloth/TPP_JVV1713251711733_in_post.png ADDED
cloth/cloth_ori/NAP_1647597315917349_in.webp ADDED
cloth/cloth_ori/NAP_1647597325621176_in.webp ADDED
cloth/cloth_ori/NAP_1647597325684024_in.webp ADDED
cloth/cloth_ori/NAP_1647597326026201_in.webp ADDED
cloth/cloth_ori/NAP_1647597326873307_in.webp ADDED
cloth/cloth_ori/NAP_1647597335012288_in.webp ADDED
cloth/cloth_ori/TPP_JVV1695795105796_in.webp ADDED
cloth/cloth_ori/TPP_JVV1713251711733_in.webp ADDED
face/face/1.jpg ADDED
face/face/2.jpg ADDED
face/face/3333.jpg ADDED
pose/pose/00034_00.jpg ADDED
pose/pose/00121_00.jpg ADDED
pose/pose/01992_00.jpg ADDED