from typing import Callable, Optional, Union import torch import torch.nn.functional as F from torch import nn from diffusers.utils import USE_PEFT_BACKEND from diffusers.models.lora import LoRALinearLayer class CacheAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.cache = {} # cache hidden states def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, ) -> torch.FloatTensor: self.cache["hidden_states"] = hidden_states # cache hidden states residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class SAttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, name, hidden_size, cross_attention_dim=None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") super().__init__() self.name = name self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, cond_hidden_states=None, sa_hidden_states=None, ) -> torch.FloatTensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: # for reference adapter if sa_hidden_states is not None: ref_hidden_states = sa_hidden_states[self.name] encoder_hidden_states = torch.cat([hidden_states, ref_hidden_states], dim=1) else: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class CAttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, name, hidden_size, cross_attention_dim=None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") super().__init__() self.name = name self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim # self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) # self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, cond_hidden_states=None, sa_hidden_states=None, ) -> torch.FloatTensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # for ip # if cond_hidden_states: # ip_hidden_states = cond_hidden_states # ip_key = self.to_k_ip(ip_hidden_states) # ip_value = self.to_v_ip(ip_hidden_states) # ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # # # the output of sdp = (batch, num_heads, seq_len, head_dim) # # TODO: add support for attn.scale when we move to Torch 2.1 # ip_hidden_states = F.scaled_dot_product_attention( # query, ip_key, ip_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False # ) # ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # ip_hidden_states = ip_hidden_states.to(query.dtype) # hidden_states = hidden_states + ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class RefLoraSAttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, name, hidden_size, cross_attention_dim=None, scale=1.0, rank=128, network_alpha=None, lora_scale=1.0,): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") super().__init__() self.name = name self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.scale = scale self.rank = rank self.lora_scale = lora_scale self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, num_images_per_prompt=1, cond_hidden_states=None, sa_hidden_states=None, ) -> torch.FloatTensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) query = attn.to_q(hidden_states, *args) + self.lora_scale * self.to_q_lora(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) + self.lora_scale * self.to_k_lora(encoder_hidden_states) value = attn.to_v(encoder_hidden_states, *args) + self.lora_scale * self.to_v_lora(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # for ref adapter if sa_hidden_states is not None: ref_hidden_states = sa_hidden_states[self.name] # for ref ref_key = self.to_k_ref(ref_hidden_states) ref_value = self.to_v_ref(ref_hidden_states) ref_key = ref_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ref_value = ref_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ref_hidden_states = F.scaled_dot_product_attention( query, ref_key, ref_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) ref_hidden_states = ref_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ref_hidden_states = ref_hidden_states.to(query.dtype) hidden_states = hidden_states + ref_hidden_states * self.scale # linear proj hidden_states = attn.to_out[0](hidden_states, *args) + self.lora_scale * self.to_out_lora(hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class RefSAttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, name, hidden_size, cross_attention_dim=None, scale=1.0): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") super().__init__() self.name = name self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.scale = scale def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, num_images_per_prompt=1, cond_hidden_states=None, sa_hidden_states=None, ) -> torch.FloatTensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # for ref adapter if sa_hidden_states is not None: ref_hidden_states = sa_hidden_states[self.name] # for ref ref_key = self.to_k_ref(ref_hidden_states) ref_value = self.to_v_ref(ref_hidden_states) ref_key = ref_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ref_value = ref_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ref_hidden_states = F.scaled_dot_product_attention( query, ref_key, ref_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) ref_hidden_states = ref_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ref_hidden_states = ref_hidden_states.to(query.dtype) hidden_states = hidden_states + ref_hidden_states * self.scale # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, sa_hidden_states=None, scale: float = 1.0, ): # attn原始的attn模块 residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: if sa_hidden_states is not None: ref_hidden_states = sa_hidden_states[self.name] # print(ref_hidden_states.shape, hidden_states.shape) encoder_hidden_states = torch.cat([hidden_states, ref_hidden_states], dim=1) else: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens if end_pos != 89: encoder_hidden_states = encoder_hidden_states ip_hidden_states = None else: encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # make sure the ipa is in the inference stage if ip_hidden_states is not None: # for ip-adapter ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) with torch.no_grad(): self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) # print(self.attn_map.shape) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class LoRAIPAttnProcessor2_0(nn.Module): r""" Processor for implementing the LoRA attention mechanism. Args: hidden_size (`int`, *optional*): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*): The number of channels in the `encoder_hidden_states`. rank (`int`, defaults to 4): The dimension of the LoRA update matrices. network_alpha (`int`, *optional*): Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. """ def __init__(self, hidden_size, cross_attention_dim=None, rank=128, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4): super().__init__() self.rank = rank self.lora_scale = lora_scale self.num_tokens = num_tokens self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None, *args, **kwargs, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states) # query = attn.head_to_batch_dim(query) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) # for text key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # for ip ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states