Spaces:
Runtime error
Runtime error
""" | |
Client test. | |
Run server: | |
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b | |
NOTE: For private models, add --use-auth_token=True | |
NOTE: --infer_devices=True (default) must be used for multi-GPU in case see failures with cuda:x cuda:y mismatches. | |
Currently, this will force model to be on a single GPU. | |
Then run this client as: | |
python client_test.py | |
For HF spaces: | |
HOST="https://h2oai-h2ogpt-chatbot.hf.space" python client_test.py | |
Result: | |
Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space ✔ | |
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.'} | |
For demo: | |
HOST="https://gpt.h2o.ai" python client_test.py | |
Result: | |
Loaded as API: https://gpt.h2o.ai ✔ | |
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.'} | |
""" | |
debug = False | |
import os | |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' | |
def get_client(): | |
from gradio_client import Client | |
client = Client(os.getenv('HOST', "http://localhost:7860")) | |
if debug: | |
print(client.view_api(all_endpoints=True)) | |
return client | |
def test_client_basic(): | |
instruction = '' # only for chat=True | |
iinput = '' # only for chat=True | |
context = '' | |
# streaming output is supported, loops over and outputs each generation in streaming mode | |
# but leave stream_output=False for simple input/output mode | |
stream_output = False | |
prompt_type = 'human_bot' | |
temperature = 0.1 | |
top_p = 0.75 | |
top_k = 40 | |
num_beams = 1 | |
max_new_tokens = 50 | |
min_new_tokens = 0 | |
early_stopping = False | |
max_time = 20 | |
repetition_penalty = 1.0 | |
num_return_sequences = 1 | |
do_sample = True | |
# only these 2 below used if pass chat=False | |
chat = False | |
instruction_nochat = "Who are you?" | |
iinput_nochat = '' | |
args = [instruction, | |
iinput, | |
context, | |
stream_output, | |
prompt_type, | |
temperature, | |
top_p, | |
top_k, | |
num_beams, | |
max_new_tokens, | |
min_new_tokens, | |
early_stopping, | |
max_time, | |
repetition_penalty, | |
num_return_sequences, | |
do_sample, | |
chat, | |
instruction_nochat, | |
iinput_nochat, | |
] | |
api_name = '/submit_nochat' | |
client = get_client() | |
res = client.predict( | |
*tuple(args), | |
api_name=api_name, | |
) | |
res_dict = dict(instruction_nochat=instruction_nochat, iinput_nochat=iinput_nochat, response=md_to_text(res)) | |
print(res_dict) | |
return res_dict | |
import markdown # pip install markdown | |
from bs4 import BeautifulSoup # pip install beautifulsoup4 | |
def md_to_text(md): | |
html = markdown.markdown(md) | |
soup = BeautifulSoup(html, features='html.parser') | |
return soup.get_text() | |
if __name__ == '__main__': | |
test_client_basic() | |