File size: 3,733 Bytes
bfa1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import argparse
import logging
import logging.config

logging.config.dictConfig({
  "version": 1,
  "formatters": {
    "standard": {
      "format": "[%(asctime)s] [%(levelname)s] [%(name)s::%(funcName)s::%(lineno)d] %(message)s"
    }
  },
  "handlers": {
    "console": {
      "class": "logging.StreamHandler",
      "level": "DEBUG",
      "stream": "ext://sys.stdout",
      "formatter": "standard"
    }
  },
  "root": {
    "level": "ERROR",
    "handlers": [
      "console"
    ],
    "propagate": True
  }
})

from label_studio_ml.api import init_app
from sentiment_api import SentimentModel


_DEFAULT_CONFIG_PATH = os.path.join(os.path.dirname(__file__), 'config.json')


def get_kwargs_from_config(config_path=_DEFAULT_CONFIG_PATH):
    if not os.path.exists(config_path):
        return dict()
    with open(config_path) as f:
        config = json.load(f)
    assert isinstance(config, dict)
    return config


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Label studio')
    parser.add_argument(
        '-p', '--port', dest='port', type=int, default=9090,
        help='Server port')
    parser.add_argument(
        '--host', dest='host', type=str, default='0.0.0.0',
        help='Server host')
    parser.add_argument(
        '--kwargs', '--with', dest='kwargs', metavar='KEY=VAL', nargs='+', type=lambda kv: kv.split('='),
        help='Additional LabelStudioMLBase model initialization kwargs')
    parser.add_argument(
        '-d', '--debug', dest='debug', action='store_true',
        help='Switch debug mode')
    parser.add_argument(
        '--log-level', dest='log_level', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR'], default=None,
        help='Logging level')
    parser.add_argument(
        '--model-dir', dest='model_dir', default=os.path.dirname(__file__),
        help='Directory where models are stored (relative to the project directory)')
    parser.add_argument(
        '--check', dest='check', action='store_true',
        help='Validate model instance before launching server')

    args = parser.parse_args()

    # setup logging level
    if args.log_level:
        logging.root.setLevel(args.log_level)

    def isfloat(value):
        try:
            float(value)
            return True
        except ValueError:
            return False

    def parse_kwargs():
        param = dict()
        for k, v in args.kwargs:
            if v.isdigit():
                param[k] = int(v)
            elif v == 'True' or v == 'true':
                param[k] = True
            elif v == 'False' or v == 'False':
                param[k] = False
            elif isfloat(v):
                param[k] = float(v)
            else:
                param[k] = v
        return param

    kwargs = get_kwargs_from_config()

    if args.kwargs:
        kwargs.update(parse_kwargs())

    if args.check:
        print('Check "' + SentimentModel.__name__ + '" instance creation..')
        model = SentimentModel(**kwargs)

    app = init_app(
        model_class=SentimentModel,
        model_dir=os.environ.get('MODEL_DIR', args.model_dir),
        redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
        redis_host=os.environ.get('REDIS_HOST', 'localhost'),
        redis_port=os.environ.get('REDIS_PORT', 6379),
        **kwargs
    )

    app.run(host=args.host, port=args.port, debug=args.debug)

else:
    # for uWSGI use
    app = init_app(
        model_class=SentimentModel,
        model_dir=os.environ.get('MODEL_DIR', os.path.dirname(__file__)),
        redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
        redis_host=os.environ.get('REDIS_HOST', 'localhost'),
        redis_port=os.environ.get('REDIS_PORT', 6379)
    )