File size: 12,277 Bytes
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4376a0b
 
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
4376a0b
 
 
 
 
 
 
 
52d68d4
4376a0b
 
 
 
 
84fc570
 
4376a0b
 
 
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
from PIL import Image
import numpy as np
import gradio as gr


def assert_input_image(input_front_image, input_back_image):
    if input_front_image is None:
        raise gr.Error("No front image selected or uploaded!")
    if input_back_image is None:
        raise gr.Error("No back image selected or uploaded!")

def prepare_working_dir():
    import tempfile
    working_dir = tempfile.TemporaryDirectory()
    return working_dir

def init_preprocessor():
    from openlrm.utils.preprocess import Preprocessor
    global preprocessor
    preprocessor = Preprocessor()

def preprocess_fn(image_in_front: np.ndarray, image_in_back: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
    # save front image first
    image_raw_front = os.path.join(working_dir.name, "raw_front.png")
    with Image.fromarray(image_in_front) as img:
        img.save(image_raw_front)
    image_out_front = os.path.join(working_dir.name, "front/rembg_front.png")

    # save back image first
    image_raw_back = os.path.join(working_dir.name, "raw_back.png")
    with Image.fromarray(image_in_back) as img:
        img.save(image_raw_back)
    image_out_back = os.path.join(working_dir.name, "back/rembg_back.png")

    # process the front and back image.
    success_front = preprocessor.preprocess(image_path=image_raw_front, save_path=image_out_front, rmbg=remove_bg, recenter=recenter)
    success_back = preprocessor.preprocess(image_path=image_raw_back, save_path=image_out_back, rmbg=remove_bg, recenter=recenter)
    assert success_front and success_back, f"Failed under preprocess_fn!"
    return image_out_front, image_out_back


def demo_openlrm(infer_impl):

    def core_fn(image_front: str, image_back: str, source_cam_dist: float, working_dir):
        dump_video_path = os.path.join(working_dir.name, "output.mp4")
        dump_mesh_path = os.path.join(working_dir.name, "output.ply")
        infer_impl(
            image_path=image_front,
            source_cam_dist=source_cam_dist,
            export_video=True,
            export_mesh=False,
            dump_video_path=dump_video_path,
            dump_mesh_path=dump_mesh_path,
            image_path_back=image_back,
        )
        return dump_video_path

    def example_fn(input_front_image: np.ndarray, input_back_image: np.ndarray):
        from gradio.utils import get_cache_folder
        working_dir = get_cache_folder()
        processed_front_image, processed_back_image = preprocess_fn(
            image_in_front=input_front_image,
            image_in_back=input_back_image,
            remove_bg=True,
            recenter=True,
            working_dir=working_dir,
        )
        video = core_fn(
            image_front=processed_front_image,
            image_back=processed_back_image,
            source_cam_dist=2.0,
            working_dir=working_dir,
        )
        return processed_front_image, processed_back_image, video

    _TITLE = '''🔥 🔥 🔥 Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images'''

    _DESCRIPTION = '''
        <div>
            <a style="display:inline-block" href='https://github.com/Qi-Zhangyang/Tailor3D'><img src='https://img.shields.io/github/stars/Qi-Zhangyang/Tailor3D?style=social'/></a>
            <a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/alexzyqi"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
        </div>
        We propose Tailor3D, a novel pipeline creating customized 3D assets from editable dual-side images and feed-forward reconstruction methods.

        Here we show the final step of Tailor3D. That is given the edited front and beck view of the object. We can produce the 3D object with several seconds.

        <strong>Disclaimer:</strong> This demo uses `Tailor3D-base-1.1` model with 288x288 rendering resolution here for a quick demonstration.
    '''

    with gr.Blocks(analytics_enabled=False) as demo:

        # HEADERS
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        with gr.Row():
            gr.Markdown(_DESCRIPTION)

        # DISPLAY
        with gr.Row():
            gr.Markdown(
                """
                ## 🖼️ Input: This is the input front and back images.
                """
            )
        with gr.Row():
            with gr.Column(variant='panel', scale=0.2):
                with gr.Tabs(elem_id="tailor3d_input_front_image"):
                    with gr.TabItem('Input Front-view Image'):
                        with gr.Row():
                            input_front_image = gr.Image(label="Input Front Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")

            with gr.Column(variant='panel', scale=0.2):
                with gr.Tabs(elem_id="tailor3d_input_back_image"):
                    with gr.TabItem('Input Back-view Image'):
                        with gr.Row():
                            input_back_image = gr.Image(label="Input Back Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")
        with gr.Row():
            gr.Markdown(
                """
                ## 🛠️ Preprocess: Remove the background and center the object.
                """
            )
        with gr.Row():
            with gr.Column(variant='panel', scale=0.2):
                with gr.Tabs(elem_id="tailor3d_processed_image"):
                    with gr.TabItem('Processed Front-view Image'):
                        with gr.Row():
                            processed_front_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
            with gr.Column(variant='panel', scale=0.2):
                with gr.Tabs(elem_id="tailor3d_processed_image"):
                    with gr.TabItem('Processed Back-view Image'):
                        with gr.Row():
                            processed_back_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
        with gr.Row():
            gr.Markdown(
                """
                ## 🚀 Output: The rendering video of the 3D object.
                Note that the output is the 3D mesh, for convience, we showcase it through a video that circles around.
                """
            )
        with gr.Row():
            with gr.Column(variant='panel', scale=0.2):
                with gr.Tabs(elem_id="tailor3d_render_video"):
                    with gr.TabItem('Rendered Video'):
                        with gr.Row():
                            output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True)

        # SETTING
        with gr.Row():
            with gr.Column(variant='panel', scale=1):
                with gr.Tabs(elem_id="openlrm_attrs"):
                    with gr.TabItem('Settings'):
                        with gr.Column(variant='panel'):
                            gr.Markdown(
                                """
                                <strong>Best Practice</strong>:
                                    Centered objects in reasonable sizes. Try adjusting source camera distances.
                                """
                            )
                            checkbox_rembg = gr.Checkbox(True, label='Remove background')
                            checkbox_recenter = gr.Checkbox(True, label='Recenter the object')
                            slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance")
                            submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')

        # EXAMPLES
        with gr.Row():
            gr.Markdown(
                """
                ## Example in the paper.
                """
            )
        with gr.Row():
            examples = [
                ['assets/sample_input/demo/front/boy_astronaut.png', 'assets/sample_input/demo/back/boy_astronaut.png'],
                ['assets/sample_input/demo/front/boy_chinese_style.png', 'assets/sample_input/demo/back/boy_chinese_style.png'],
                ['assets/sample_input/demo/front/kunkun_soccer.png', 'assets/sample_input/demo/back/kunkun_soccer.png'],
                ['assets/sample_input/demo/front/marvel_superman.png', 'assets/sample_input/demo/back/marvel_superman.png'],
            ]

            for example in examples:
                with gr.Column(scale=1):
                    gr.Examples(
                        examples=[example],
                        inputs=[input_front_image, input_back_image], 
                        outputs=[processed_front_image, processed_back_image, output_video],
                        fn=example_fn,
                        cache_examples=bool(os.getenv('SPACE_ID')),
                        examples_per_page=3,
                    )

        # EXAMPLES
        with gr.Row():
            examples = [
                ['assets/sample_input/demo/front/lego_astronaut.png', 'assets/sample_input/demo/back/lego_astronaut.png'],
                ['assets/sample_input/demo/front/lego_wizard.png', 'assets/sample_input/demo/back/lego_wizard.png'],
                ['assets/sample_input/demo/front/bird.png', 'assets/sample_input/demo/back/bird.png'],
                ['assets/sample_input/demo/front/bird_whitered.png', 'assets/sample_input/demo/back/bird_whitered.png'],
            ]

            for example in examples:
                with gr.Column(scale=0.3):
                    gr.Examples(
                        examples=[example],
                        inputs=[input_front_image, input_back_image], 
                        outputs=[processed_front_image, processed_back_image, output_video],
                        fn=example_fn,
                        cache_examples=bool(os.getenv('SPACE_ID')),
                        examples_per_page=3,
                    )

        working_dir = gr.State()
        submit.click(
            fn=assert_input_image,
            inputs=[input_front_image, input_back_image],
            queue=False,
        ).success(
            fn=prepare_working_dir,
            outputs=[working_dir],
            queue=False,
        ).success(
            fn=preprocess_fn,
            inputs=[input_front_image, input_back_image, checkbox_rembg, checkbox_recenter, working_dir],
            outputs=[processed_front_image, processed_back_image],
        ).success(
            fn=core_fn,
            inputs=[processed_front_image, processed_back_image, slider_cam_dist, working_dir],
            outputs=[output_video],
        )

        demo.queue()
        demo.launch()


def launch_gradio_app():

    os.environ.update({
        "APP_ENABLED": "1",
        "APP_MODEL_NAME": "alexzyqi/Tailor3D-Base-1.0",
        "APP_PRETRAIN_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1",
        "APP_INFER": "./configs/infer-gradio-base.yaml",
        "APP_TYPE": "infer.lrm",
        "NUMBA_THREADING_LAYER": 'omp',
    })

    from openlrm.runners import REGISTRY_RUNNERS
    from openlrm.runners.infer.base_inferrer import Inferrer
    InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
    with InferrerClass() as inferrer:
        init_preprocessor()
        if not bool(os.getenv('SPACE_ID')):
            from openlrm.utils.proxy import no_proxy
            demo = no_proxy(demo_openlrm)
        else:
            demo = demo_openlrm
        demo(infer_impl=inferrer.infer_single)


if __name__ == '__main__':

    launch_gradio_app()