File size: 12,277 Bytes
52d68d4 4376a0b 52d68d4 4376a0b 52d68d4 4376a0b 84fc570 4376a0b 52d68d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image
import numpy as np
import gradio as gr
def assert_input_image(input_front_image, input_back_image):
if input_front_image is None:
raise gr.Error("No front image selected or uploaded!")
if input_back_image is None:
raise gr.Error("No back image selected or uploaded!")
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from openlrm.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in_front: np.ndarray, image_in_back: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
# save front image first
image_raw_front = os.path.join(working_dir.name, "raw_front.png")
with Image.fromarray(image_in_front) as img:
img.save(image_raw_front)
image_out_front = os.path.join(working_dir.name, "front/rembg_front.png")
# save back image first
image_raw_back = os.path.join(working_dir.name, "raw_back.png")
with Image.fromarray(image_in_back) as img:
img.save(image_raw_back)
image_out_back = os.path.join(working_dir.name, "back/rembg_back.png")
# process the front and back image.
success_front = preprocessor.preprocess(image_path=image_raw_front, save_path=image_out_front, rmbg=remove_bg, recenter=recenter)
success_back = preprocessor.preprocess(image_path=image_raw_back, save_path=image_out_back, rmbg=remove_bg, recenter=recenter)
assert success_front and success_back, f"Failed under preprocess_fn!"
return image_out_front, image_out_back
def demo_openlrm(infer_impl):
def core_fn(image_front: str, image_back: str, source_cam_dist: float, working_dir):
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_mesh_path = os.path.join(working_dir.name, "output.ply")
infer_impl(
image_path=image_front,
source_cam_dist=source_cam_dist,
export_video=True,
export_mesh=False,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
image_path_back=image_back,
)
return dump_video_path
def example_fn(input_front_image: np.ndarray, input_back_image: np.ndarray):
from gradio.utils import get_cache_folder
working_dir = get_cache_folder()
processed_front_image, processed_back_image = preprocess_fn(
image_in_front=input_front_image,
image_in_back=input_back_image,
remove_bg=True,
recenter=True,
working_dir=working_dir,
)
video = core_fn(
image_front=processed_front_image,
image_back=processed_back_image,
source_cam_dist=2.0,
working_dir=working_dir,
)
return processed_front_image, processed_back_image, video
_TITLE = '''🔥 🔥 🔥 Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href='https://github.com/Qi-Zhangyang/Tailor3D'><img src='https://img.shields.io/github/stars/Qi-Zhangyang/Tailor3D?style=social'/></a>
<a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/alexzyqi"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
</div>
We propose Tailor3D, a novel pipeline creating customized 3D assets from editable dual-side images and feed-forward reconstruction methods.
Here we show the final step of Tailor3D. That is given the edited front and beck view of the object. We can produce the 3D object with several seconds.
<strong>Disclaimer:</strong> This demo uses `Tailor3D-base-1.1` model with 288x288 rendering resolution here for a quick demonstration.
'''
with gr.Blocks(analytics_enabled=False) as demo:
# HEADERS
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
with gr.Row():
gr.Markdown(_DESCRIPTION)
# DISPLAY
with gr.Row():
gr.Markdown(
"""
## 🖼️ Input: This is the input front and back images.
"""
)
with gr.Row():
with gr.Column(variant='panel', scale=0.2):
with gr.Tabs(elem_id="tailor3d_input_front_image"):
with gr.TabItem('Input Front-view Image'):
with gr.Row():
input_front_image = gr.Image(label="Input Front Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")
with gr.Column(variant='panel', scale=0.2):
with gr.Tabs(elem_id="tailor3d_input_back_image"):
with gr.TabItem('Input Back-view Image'):
with gr.Row():
input_back_image = gr.Image(label="Input Back Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")
with gr.Row():
gr.Markdown(
"""
## 🛠️ Preprocess: Remove the background and center the object.
"""
)
with gr.Row():
with gr.Column(variant='panel', scale=0.2):
with gr.Tabs(elem_id="tailor3d_processed_image"):
with gr.TabItem('Processed Front-view Image'):
with gr.Row():
processed_front_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
with gr.Column(variant='panel', scale=0.2):
with gr.Tabs(elem_id="tailor3d_processed_image"):
with gr.TabItem('Processed Back-view Image'):
with gr.Row():
processed_back_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
with gr.Row():
gr.Markdown(
"""
## 🚀 Output: The rendering video of the 3D object.
Note that the output is the 3D mesh, for convience, we showcase it through a video that circles around.
"""
)
with gr.Row():
with gr.Column(variant='panel', scale=0.2):
with gr.Tabs(elem_id="tailor3d_render_video"):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_attrs"):
with gr.TabItem('Settings'):
with gr.Column(variant='panel'):
gr.Markdown(
"""
<strong>Best Practice</strong>:
Centered objects in reasonable sizes. Try adjusting source camera distances.
"""
)
checkbox_rembg = gr.Checkbox(True, label='Remove background')
checkbox_recenter = gr.Checkbox(True, label='Recenter the object')
slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance")
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
# EXAMPLES
with gr.Row():
gr.Markdown(
"""
## Example in the paper.
"""
)
with gr.Row():
examples = [
['assets/sample_input/demo/front/boy_astronaut.png', 'assets/sample_input/demo/back/boy_astronaut.png'],
['assets/sample_input/demo/front/boy_chinese_style.png', 'assets/sample_input/demo/back/boy_chinese_style.png'],
['assets/sample_input/demo/front/kunkun_soccer.png', 'assets/sample_input/demo/back/kunkun_soccer.png'],
['assets/sample_input/demo/front/marvel_superman.png', 'assets/sample_input/demo/back/marvel_superman.png'],
]
for example in examples:
with gr.Column(scale=1):
gr.Examples(
examples=[example],
inputs=[input_front_image, input_back_image],
outputs=[processed_front_image, processed_back_image, output_video],
fn=example_fn,
cache_examples=bool(os.getenv('SPACE_ID')),
examples_per_page=3,
)
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/demo/front/lego_astronaut.png', 'assets/sample_input/demo/back/lego_astronaut.png'],
['assets/sample_input/demo/front/lego_wizard.png', 'assets/sample_input/demo/back/lego_wizard.png'],
['assets/sample_input/demo/front/bird.png', 'assets/sample_input/demo/back/bird.png'],
['assets/sample_input/demo/front/bird_whitered.png', 'assets/sample_input/demo/back/bird_whitered.png'],
]
for example in examples:
with gr.Column(scale=0.3):
gr.Examples(
examples=[example],
inputs=[input_front_image, input_back_image],
outputs=[processed_front_image, processed_back_image, output_video],
fn=example_fn,
cache_examples=bool(os.getenv('SPACE_ID')),
examples_per_page=3,
)
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_front_image, input_back_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=preprocess_fn,
inputs=[input_front_image, input_back_image, checkbox_rembg, checkbox_recenter, working_dir],
outputs=[processed_front_image, processed_back_image],
).success(
fn=core_fn,
inputs=[processed_front_image, processed_back_image, slider_cam_dist, working_dir],
outputs=[output_video],
)
demo.queue()
demo.launch()
def launch_gradio_app():
os.environ.update({
"APP_ENABLED": "1",
"APP_MODEL_NAME": "alexzyqi/Tailor3D-Base-1.0",
"APP_PRETRAIN_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1",
"APP_INFER": "./configs/infer-gradio-base.yaml",
"APP_TYPE": "infer.lrm",
"NUMBA_THREADING_LAYER": 'omp',
})
from openlrm.runners import REGISTRY_RUNNERS
from openlrm.runners.infer.base_inferrer import Inferrer
InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
with InferrerClass() as inferrer:
init_preprocessor()
if not bool(os.getenv('SPACE_ID')):
from openlrm.utils.proxy import no_proxy
demo = no_proxy(demo_openlrm)
else:
demo = demo_openlrm
demo(infer_impl=inferrer.infer_single)
if __name__ == '__main__':
launch_gradio_app()
|