|
from __future__ import annotations |
|
|
|
import os |
|
import pandas as pd |
|
import torch |
|
import faiss |
|
import streamlit as st |
|
from time import time |
|
from openai import OpenAI |
|
from sentence_transformers import SentenceTransformer |
|
from datasets import load_dataset |
|
from datasets.download import DownloadManager |
|
|
|
WIKIPEDIA_JA_DS = "singletongue/wikipedia-utils" |
|
WIKIPEDIA_JS_DS_NAME = "passages-c400-jawiki-20230403" |
|
WIKIPEDIA_JA_EMB_DS = "hotchpotch/wikipedia-passages-jawiki-embeddings" |
|
|
|
EMB_MODEL_PQ = { |
|
"intfloat/multilingual-e5-small": 96, |
|
"intfloat/multilingual-e5-base": 192, |
|
"intfloat/multilingual-e5-large": 256, |
|
"cl-nagoya/sup-simcse-ja-base": 192, |
|
"pkshatech/GLuCoSE-base-ja": 192, |
|
} |
|
|
|
EMB_MODEL_NAMES = list(EMB_MODEL_PQ.keys()) |
|
|
|
OPENAI_MODEL_NAMES = [ |
|
"gpt-3.5-turbo-1106", |
|
"gpt-4-1106-preview", |
|
"Search Only", |
|
] |
|
|
|
E5_QUERY_TYPES = [ |
|
"passage", |
|
"query", |
|
] |
|
|
|
DEFAULT_QA_PROMPT = """ |
|
## Instruction |
|
|
|
Prepare an explanatory statement for the question, including as much detailed explanation as possible. |
|
Avoid speculations or information not contained in the contexts. Heavily favor knowledge provided in the documents before falling back to baseline knowledge or other contexts. If searching the contexts didn"t yield any answer, just say that. |
|
|
|
Responses must be given in Japanese. |
|
|
|
## Contexts |
|
|
|
{contexts} |
|
|
|
## Question |
|
|
|
{question} |
|
""".strip() |
|
|
|
if os.getenv("SPACE_ID"): |
|
USE_HF_SPACE = True |
|
os.environ["HF_HOME"] = "/data/.huggingface" |
|
os.environ["HF_DATASETS_CACHE"] = "/data/.huggingface" |
|
else: |
|
USE_HF_SPACE = False |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") |
|
|
|
|
|
@st.cache_resource |
|
def get_model(name: str, max_seq_length=512): |
|
device = "cpu" |
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
elif torch.backends.mps.is_available(): |
|
device = "mps" |
|
|
|
model = SentenceTransformer(name, device=device) |
|
model.max_seq_length = max_seq_length |
|
return model |
|
|
|
|
|
@st.cache_resource |
|
def get_wikija_ds(name: str = WIKIPEDIA_JS_DS_NAME): |
|
ds = load_dataset(path=WIKIPEDIA_JA_DS, name=name, split="train") |
|
return ds |
|
|
|
|
|
@st.cache_resource |
|
def get_faiss_index(index_name: str, ja_emb_ds: str = WIKIPEDIA_JA_EMB_DS, name=WIKIPEDIA_JS_DS_NAME): |
|
target_path = f"faiss_indexes/{name}/{index_name}" |
|
dm = DownloadManager() |
|
index_local_path = dm.download( |
|
f"https://huggingface.co/datasets/{ja_emb_ds}/resolve/main/{target_path}" |
|
) |
|
index = faiss.read_index(index_local_path) |
|
index.nprobe = 128 |
|
return index |
|
|
|
|
|
def text_to_emb(model, text: str, prefix: str): |
|
return model.encode([prefix + text], normalize_embeddings=True) |
|
|
|
|
|
def search(faiss_index, emb_model, ds, question: str, search_text_prefix: str, top_k: int): |
|
start_time = time() |
|
emb = text_to_emb(emb_model, question, search_text_prefix) |
|
emb_exec_time = time() - start_time |
|
scores, indexes = faiss_index.search(emb, top_k) |
|
faiss_seartch_time = time() - emb_exec_time - start_time |
|
scores = scores[0] |
|
indexes = indexes[0] |
|
results = [] |
|
for idx, score in zip(indexes, scores): |
|
idx = int(idx) |
|
passage = ds[idx] |
|
results.append((score, passage)) |
|
return results, emb_exec_time, faiss_seartch_time |
|
|
|
|
|
def to_contexts(passages): |
|
contexts = "" |
|
for passage in passages: |
|
title = passage["title"] |
|
text = passage["text"] |
|
contexts += f"- {title}: {text}\n" |
|
return contexts |
|
|
|
|
|
def qa( |
|
openai_api_key: str, |
|
question: str, |
|
passages: list, |
|
model_name: str, |
|
temperature: int, |
|
qa_prompt: str, |
|
max_tokens=2000, |
|
): |
|
client = OpenAI(api_key=openai_api_key) |
|
contexts = to_contexts(passages) |
|
prompt = qa_prompt.format(contexts=contexts, question=question) |
|
response = client.chat.completions.create( |
|
model=model_name, |
|
messages=[ |
|
{"role": "user", "content": prompt}, |
|
], |
|
stream=True, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
seed=42, |
|
) |
|
for chunk in response: |
|
delta = chunk.choices[0].delta |
|
yield delta.content or "" |
|
|
|
|
|
def generate_answer( |
|
openai_api_key, |
|
buf, |
|
question, |
|
passages, |
|
model_name, |
|
temperature, |
|
qa_prompt, |
|
max_tokens, |
|
): |
|
buf.write("⏳回答の生成中...") |
|
texts = "" |
|
for char in qa( |
|
openai_api_key=openai_api_key, |
|
question=question, |
|
passages=passages, |
|
model_name=model_name, |
|
temperature=temperature, |
|
qa_prompt=qa_prompt, |
|
max_tokens=max_tokens, |
|
): |
|
texts += char |
|
buf.write(texts) |
|
|
|
|
|
def to_df(scores, passages): |
|
df = pd.DataFrame(passages) |
|
df["text"] = df["text"] |
|
df["score"] = scores |
|
df_rows = ["score", "title", "text", "section"] |
|
df = df[df_rows] |
|
return df |
|
|
|
|
|
def app(): |
|
st.title("Wikipedia 日本語 - RAGを使った検索Q&A") |
|
md_text = """ |
|
[RAG用途に使える、Wikipedia 日本語の embeddings とベクトル検索用の faiss index を作った](https://secon.dev/entry/2023/12/04/080000-wikipedia-ja-embeddings/) の検索 & 質疑応答Q&Aのデモです。Wikipedia 2023年4月3日時点のデータを使用しています。 |
|
""" |
|
st.markdown(md_text) |
|
|
|
st.text_area( |
|
"Question", |
|
key="question", |
|
value="楽曲『約束はいらない』でデビューした、声優は誰?", |
|
) |
|
st.text_input( |
|
"OpenAI API Key", |
|
key="openai_api_key", |
|
type="password", |
|
value=OPENAI_API_KEY if OPENAI_API_KEY else "", |
|
placeholder="※ OpenAI API Key 未入力時は回答を生成せずに、検索のみ実行します", |
|
) |
|
|
|
with st.expander("オプション"): |
|
option_cols_main = st.columns(2) |
|
with option_cols_main[0]: |
|
st.selectbox("Emb Model", EMB_MODEL_NAMES, index=0, key="emb_model_name") |
|
with option_cols_main[1]: |
|
st.selectbox( |
|
"OpenAI Model", OPENAI_MODEL_NAMES, index=0, key="openai_model_name" |
|
) |
|
if "emb_model_name" not in st.session_state: |
|
st.session_state.emb_model_name = EMB_MODEL_NAMES[0] |
|
emb_model_name = st.session_state.emb_model_name |
|
option_cols_sub = st.columns(2) |
|
with option_cols_sub[0]: |
|
st.number_input("Top K", value=5, key="top_k", min_value=1, max_value=20) |
|
with option_cols_sub[1]: |
|
if "-e5-" in emb_model_name: |
|
st.radio( |
|
"Passage or Query (e5 only)", |
|
E5_QUERY_TYPES, |
|
index=0, |
|
key="e5_query_or_passage", |
|
horizontal=True, |
|
) |
|
e5_query_or_passage = st.session_state.e5_query_or_passage |
|
index_emb_model_name = ( |
|
f"{emb_model_name.split('/')[-1]}-{e5_query_or_passage}" |
|
) |
|
search_text_prefix = f"{e5_query_or_passage}: " |
|
else: |
|
index_emb_model_name = emb_model_name.split("/")[-1] |
|
search_text_prefix = "" |
|
option_cols = st.columns(3) |
|
with option_cols[0]: |
|
st.slider("Temperature", 0.0, 1.0, value=0.8, key="temperature") |
|
with option_cols[1]: |
|
st.slider("nprobe", 16, 1024, value=128, key="nprobe") |
|
with option_cols[2]: |
|
st.number_input( |
|
"max_tokens", value=2000, key="max_tokens", min_value=1, max_value=16000 |
|
) |
|
st.text_area("QA Prompt", value=DEFAULT_QA_PROMPT, key="qa_prompt") |
|
|
|
loading_placeholder = st.empty() |
|
loading_placeholder.text("⏳ Loading - Embedding Model...") |
|
emb_model = get_model(st.session_state.emb_model_name) |
|
loading_placeholder.text("⏳ Loading - Faiss Index...") |
|
emb_model_pq = EMB_MODEL_PQ[emb_model_name] |
|
index_name = f"{index_emb_model_name}/index_IVF2048_PQ{emb_model_pq}.faiss" |
|
faiss_index = get_faiss_index(index_name=index_name) |
|
faiss_index.nprobe = st.session_state.nprobe |
|
loading_placeholder.text("⏳ Loading - Huggingface Dataset...") |
|
ds = get_wikija_ds() |
|
loading_placeholder.empty() |
|
|
|
if st.button("Search"): |
|
answer_header = st.empty() |
|
answer_text_buffer = st.empty() |
|
|
|
question = st.session_state.question |
|
top_k = st.session_state.top_k |
|
scores = [] |
|
passages = [] |
|
search_results, emb_exec_time, faiss_seartch_time = search( |
|
faiss_index, |
|
emb_model, |
|
ds, |
|
question, |
|
search_text_prefix=search_text_prefix, |
|
top_k=top_k, |
|
) |
|
st.subheader("Search Results: ") |
|
st.write( |
|
f"⏱️ generate embedding: {emb_exec_time*1000:.2f}ms / faiss search: {faiss_seartch_time*1000:.2f}ms" |
|
) |
|
for score, passage in search_results: |
|
scores.append(score) |
|
passages.append(passage) |
|
df = to_df(scores, passages) |
|
st.dataframe(df, hide_index=True) |
|
|
|
openai_api_key = st.session_state.openai_api_key |
|
openai_model_name = st.session_state.openai_model_name |
|
if openai_api_key and openai_model_name != "Search Only": |
|
openai_api_key = openai_api_key.strip() |
|
answer_header.subheader("Answer: ") |
|
temperature = st.session_state.temperature |
|
qa_prompt = st.session_state.qa_prompt |
|
max_tokens = st.session_state.max_tokens |
|
generate_answer( |
|
openai_api_key=openai_api_key, |
|
buf=answer_text_buffer, |
|
question=question, |
|
passages=passages, |
|
model_name=openai_model_name, |
|
temperature=temperature, |
|
qa_prompt=qa_prompt, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app() |