File size: 9,542 Bytes
c73381c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b567a1d3-f625-4b98-9852-fcc3f3fe9609",
   "metadata": {},
   "outputs": [],
   "source": [
    "# To start with, we use the default stack\n",
    "#!zenml init\n",
    "\n",
    "# We also need to connect to a remote ZenML Instance\n",
    "#!zenml connect --url https://1cf18d95-zenml.cloudinfra.zenml.io"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c53367f1-3951-48c7-9540-21daf818fa5d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Do the imports at the top\n",
    "\n",
    "import random\n",
    "from zenml import ExternalArtifact, pipeline \n",
    "from zenml.client import Client\n",
    "from zenml.logger import get_logger\n",
    "from uuid import UUID\n",
    "\n",
    "import os\n",
    "from typing import Optional, List\n",
    "\n",
    "from zenml import pipeline\n",
    "from zenml.model.model_version import ModelVersion\n",
    "\n",
    "from pipelines import feature_engineering\n",
    "\n",
    "from steps import (\n",
    "    data_loader,\n",
    "    data_preprocessor,\n",
    "    data_splitter,\n",
    "    model_evaluator,\n",
    "    model_trainer,\n",
    "    inference_predict,\n",
    "    inference_preprocessor\n",
    ")\n",
    "\n",
    "logger = get_logger(__name__)\n",
    "\n",
    "client = Client()\n",
    "client.activate_stack(\"local-mlflow-stack\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ab87746e-b804-4fab-88f6-d4967048cb45",
   "metadata": {},
   "source": [
    "# Start local with a simple training pipeline\n",
    "\n",
    "Below you can see what the pipeline looks like. We will start by running this locally on the default-stack. This means the data between the steps is stored locally and the compute is also local."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "33872b19-7329-4f5e-9a1e-cfc1fe9d560d",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true
   },
   "source": [
    "<img src=\"_assets/default_stack.png\" alt=\"Drawing\" style=\"width: 800px;\"/>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "06625571-b281-4820-a7eb-3a085ba2e572",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from sklearn.datasets import load_breast_cancer\n",
    "from zenml import step\n",
    "from zenml.logger import get_logger\n",
    "\n",
    "logger = get_logger(__name__)\n",
    "\n",
    "# Here is what one of the steps in the pipeline looks like. Simple python function that just needs the `@step` decorator.\n",
    "\n",
    "@step\n",
    "def data_loader() -> pd.DataFrame:\n",
    "    \"\"\"Dataset reader step.\"\"\"\n",
    "    dataset = load_breast_cancer(as_frame=True)\n",
    "    inference_size = int(len(dataset.target) * 0.05)\n",
    "    dataset: pd.DataFrame = dataset.frame\n",
    "    dataset.reset_index(drop=True, inplace=True)\n",
    "    logger.info(f\"Dataset with {len(dataset)} records loaded!\")\n",
    "\n",
    "    return dataset\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "754a3069-9d13-4869-be64-a641071800cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Here's an example of what this function returns\n",
    "\n",
    "data_loader()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8aa300f1-48df-4e62-87eb-0e2fc5735da8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from zenml import pipeline\n",
    "\n",
    "@pipeline\n",
    "def breast_cancer_training(\n",
    "    train_dataset_id: Optional[UUID] = None,\n",
    "    test_dataset_id: Optional[UUID] = None,\n",
    "    min_train_accuracy: float = 0.0,\n",
    "    min_test_accuracy: float = 0.0,\n",
    "):\n",
    "    \"\"\"Model training pipeline.\"\"\"\n",
    "    # Execute Feature Engineering Pipeline\n",
    "    dataset_trn, dataset_tst = feature_engineering()\n",
    "\n",
    "    model = model_trainer(\n",
    "        dataset_trn=dataset_trn,\n",
    "    )\n",
    "\n",
    "    model_evaluator(\n",
    "        model=model,\n",
    "        dataset_trn=dataset_trn,\n",
    "        dataset_tst=dataset_tst,\n",
    "        min_train_accuracy=min_train_accuracy,\n",
    "        min_test_accuracy=min_test_accuracy,\n",
    "    )\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d55342bf-33c5-4646-b1ce-e599a99cf568",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_version = ModelVersion(\n",
    "    name=\"breast_cancer_classifier_model\",\n",
    "    description=\"Classification of Breast Cancer Dataset.\",\n",
    "    delete_new_version_on_failure=True,\n",
    "    tags=[\"classification\", \"sklearn\"],\n",
    ")\n",
    "\n",
    "pipeline_args = {\n",
    "    \"enable_cache\": True, \n",
    "    \"model_version\": model_version\n",
    "}\n",
    "\n",
    "# Model Version config\n",
    "fe_t_configured = breast_cancer_training.with_options(**pipeline_args)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f5f4aed8-7d87-4e07-a25c-345d327ad636",
   "metadata": {},
   "outputs": [],
   "source": [
    "fe_t_configured()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3e6dc42-21b8-4b3c-90ec-d6e6d541907f",
   "metadata": {},
   "source": [
    "# Let's outsource some compute to Sagemaker!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "14a840b1-288d-4713-98f4-bbe8d6e06140",
   "metadata": {},
   "source": [
    "Let's farm some compute to AWS with a training job with a certain number of CPUs and Memory. This can easily be done without and changes to the actual implementation of the pipeline. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa9308fb-3556-472c-8fc7-7f2f88d1c455",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "<img src=\"_assets/local_sagmaker_so_stack.png\" alt=\"Drawing\" style=\"width: 800px;\"/>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "48be8f60-9fbe-4d19-92e4-d9cd8289dbf7",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# This pip installs the requirements locally\n",
    "!zenml integration install aws s3 mlflow -y"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4cb26018-aa7d-497d-a0e2-855d3becb70d",
   "metadata": {},
   "outputs": [],
   "source": [
    "client.activate_stack(\"local-sagemaker-step-operator-stack\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5683a1c9-f5c1-4ba1-ad7c-1e427fd265df",
   "metadata": {},
   "outputs": [],
   "source": [
    "from zenml.config import DockerSettings\n",
    "\n",
    "# The actual code will stay the same, all that needs to be done is some configuration\n",
    "step_args = {}\n",
    "\n",
    "# We configure which step operator should be used\n",
    "step_args[\"step_operator\"] = \"sagemaker-eu\"\n",
    "\n",
    "# M5 Large is what we need for this big data!\n",
    "step_args[\"settings\"] = {\"step_operator.sagemaker\": {\"estimator_args\": {\"instance_type\" : \"ml.m5.large\"}}}\n",
    "\n",
    "# Update the step. We could also do this in YAML\n",
    "model_trainer = model_trainer.with_options(**step_args)\n",
    "\n",
    "docker_settings = DockerSettings(\n",
    "    requirements=[\n",
    "        \"pyarrow\",\n",
    "        \"scikit-learn==1.1.1\"\n",
    "    ],\n",
    ")\n",
    "\n",
    "pipeline_args = {\n",
    "    \"enable_cache\": True, \n",
    "    \"model_version\": model_version,\n",
    "    \"settings\": {\"docker\": docker_settings}\n",
    "}\n",
    "\n",
    "fe_t_configured = breast_cancer_training.with_options(**pipeline_args)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85179f52-68f0-4c8d-9808-6b080bec72c3",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# Lets run the pipeline\n",
    "fe_t_configured()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0841f93b-9eb5-4af6-bba7-cec167024ccf",
   "metadata": {},
   "source": [
    "# Switch to full Sagemaker Stack\n",
    "\n",
    "Just one command will allow you to switch the full code execution over to sagemaker. No Sagemaker domain knowledge necessary. No setup of VMs or Kubernetes clusters necessary. No maintenance of any infrastructure either.\n",
    "\n",
    "![Sagemaker local stack](_assets/sagemaker_stack.png)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8e33484-3377-4f0e-83fa-87d7c0ca4d72",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Finally, this is all that needs to be done to fully switch the code to be run fully on sagemaker\n",
    "client.activate_stack(\"sagemaker-stack\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a03c95e9-df2e-446c-8d61-9cc37ad8a46a",
   "metadata": {},
   "outputs": [],
   "source": [
    "fe_t_configured()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}