Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import functools
|
7 |
+
import os
|
8 |
+
import html
|
9 |
+
import pathlib
|
10 |
+
import tarfile
|
11 |
+
|
12 |
+
import deepdanbooru as dd
|
13 |
+
import gradio as gr
|
14 |
+
import huggingface_hub
|
15 |
+
import numpy as np
|
16 |
+
import PIL.Image
|
17 |
+
import tensorflow as tf
|
18 |
+
import piexif
|
19 |
+
import piexif.helper
|
20 |
+
|
21 |
+
TITLE = 'DeepDanbooru String'
|
22 |
+
|
23 |
+
TOKEN = os.environ['TOKEN']
|
24 |
+
MODEL_REPO = 'NoCrypt/DeepDanbooru_string'
|
25 |
+
MODEL_FILENAME = 'model-resnet_custom_v3.h5'
|
26 |
+
LABEL_FILENAME = 'tags.txt'
|
27 |
+
|
28 |
+
|
29 |
+
def parse_args() -> argparse.Namespace:
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
parser.add_argument('--score-slider-step', type=float, default=0.05)
|
32 |
+
parser.add_argument('--score-threshold', type=float, default=0.5)
|
33 |
+
parser.add_argument('--theme', type=str, default='dark-grass')
|
34 |
+
parser.add_argument('--live', action='store_true')
|
35 |
+
parser.add_argument('--share', action='store_true')
|
36 |
+
parser.add_argument('--port', type=int)
|
37 |
+
parser.add_argument('--disable-queue',
|
38 |
+
dest='enable_queue',
|
39 |
+
action='store_false')
|
40 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
41 |
+
return parser.parse_args()
|
42 |
+
|
43 |
+
|
44 |
+
def load_sample_image_paths() -> list[pathlib.Path]:
|
45 |
+
image_dir = pathlib.Path('images')
|
46 |
+
if not image_dir.exists():
|
47 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
48 |
+
path = huggingface_hub.hf_hub_download(dataset_repo,
|
49 |
+
'images.tar.gz',
|
50 |
+
repo_type='dataset',
|
51 |
+
use_auth_token=TOKEN)
|
52 |
+
with tarfile.open(path) as f:
|
53 |
+
f.extractall()
|
54 |
+
return sorted(image_dir.glob('*'))
|
55 |
+
|
56 |
+
|
57 |
+
def load_model() -> tf.keras.Model:
|
58 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
59 |
+
MODEL_FILENAME,
|
60 |
+
use_auth_token=TOKEN)
|
61 |
+
model = tf.keras.models.load_model(path)
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
def load_labels() -> list[str]:
|
66 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
67 |
+
LABEL_FILENAME,
|
68 |
+
use_auth_token=TOKEN)
|
69 |
+
with open(path) as f:
|
70 |
+
labels = [line.strip() for line in f.readlines()]
|
71 |
+
return labels
|
72 |
+
|
73 |
+
def plaintext_to_html(text):
|
74 |
+
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
|
75 |
+
return text
|
76 |
+
|
77 |
+
def predict(image: PIL.Image.Image, score_threshold: float,
|
78 |
+
model: tf.keras.Model, labels: list[str]) -> dict[str, float]:
|
79 |
+
rawimage = image
|
80 |
+
_, height, width, _ = model.input_shape
|
81 |
+
image = np.asarray(image)
|
82 |
+
image = tf.image.resize(image,
|
83 |
+
size=(height, width),
|
84 |
+
method=tf.image.ResizeMethod.AREA,
|
85 |
+
preserve_aspect_ratio=True)
|
86 |
+
image = image.numpy()
|
87 |
+
image = dd.image.transform_and_pad_image(image, width, height)
|
88 |
+
image = image / 255.
|
89 |
+
probs = model.predict(image[None, ...])[0]
|
90 |
+
probs = probs.astype(float)
|
91 |
+
res = dict()
|
92 |
+
for prob, label in zip(probs.tolist(), labels):
|
93 |
+
if prob < score_threshold:
|
94 |
+
continue
|
95 |
+
res[label] = prob
|
96 |
+
b = dict(sorted(res.items(),key=lambda item:item[1], reverse=True))
|
97 |
+
a = ', '.join(list(b.keys())).replace('_',' ').replace('(','\(').replace(')','\)')
|
98 |
+
c = ', '.join(list(b.keys()))
|
99 |
+
|
100 |
+
items = rawimage.info
|
101 |
+
geninfo = ''
|
102 |
+
|
103 |
+
if "exif" in rawimage.info:
|
104 |
+
exif = piexif.load(rawimage.info["exif"])
|
105 |
+
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
106 |
+
try:
|
107 |
+
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
108 |
+
except ValueError:
|
109 |
+
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
110 |
+
|
111 |
+
items['exif comment'] = exif_comment
|
112 |
+
geninfo = exif_comment
|
113 |
+
|
114 |
+
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
115 |
+
'loop', 'background', 'timestamp', 'duration']:
|
116 |
+
items.pop(field, None)
|
117 |
+
|
118 |
+
geninfo = items.get('parameters', geninfo)
|
119 |
+
|
120 |
+
info = f"""
|
121 |
+
<p><h4>PNG Info</h4></p>
|
122 |
+
"""
|
123 |
+
for key, text in items.items():
|
124 |
+
info += f"""
|
125 |
+
<div>
|
126 |
+
<p><b>{plaintext_to_html(str(key))}</b></p>
|
127 |
+
<p>{plaintext_to_html(str(text))}</p>
|
128 |
+
</div>
|
129 |
+
""".strip()+"\n"
|
130 |
+
|
131 |
+
if len(info) == 0:
|
132 |
+
message = "Nothing found in the image."
|
133 |
+
info = f"<div><p>{message}<p></div>"
|
134 |
+
|
135 |
+
return (a,c,res,info)
|
136 |
+
|
137 |
+
|
138 |
+
def main():
|
139 |
+
args = parse_args()
|
140 |
+
model = load_model()
|
141 |
+
labels = load_labels()
|
142 |
+
|
143 |
+
func = functools.partial(predict, model=model, labels=labels)
|
144 |
+
func = functools.update_wrapper(func, predict)
|
145 |
+
|
146 |
+
gr.Interface(
|
147 |
+
func,
|
148 |
+
[
|
149 |
+
gr.inputs.Image(type='pil', label='Input'),
|
150 |
+
gr.inputs.Slider(0,
|
151 |
+
1,
|
152 |
+
step=args.score_slider_step,
|
153 |
+
default=args.score_threshold,
|
154 |
+
label='Score Threshold'),
|
155 |
+
],
|
156 |
+
[
|
157 |
+
gr.outputs.Textbox(label='Output (string)'),
|
158 |
+
gr.outputs.Textbox(label='Output (raw string)'),
|
159 |
+
gr.outputs.Label(label='Output (label)'),
|
160 |
+
gr.outputs.HTML()
|
161 |
+
],
|
162 |
+
examples=[
|
163 |
+
['miku.jpg',0.5],
|
164 |
+
['miku2.jpg',0.5]
|
165 |
+
],
|
166 |
+
title=TITLE,
|
167 |
+
description='''
|
168 |
+
Demo for [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) with "ready to copy" prompt and a prompt analyzer.
|
169 |
+
|
170 |
+
Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
|
171 |
+
|
172 |
+
PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
|
173 |
+
''',
|
174 |
+
theme=args.theme,
|
175 |
+
allow_flagging=args.allow_flagging,
|
176 |
+
live=args.live,
|
177 |
+
).launch(
|
178 |
+
enable_queue=args.enable_queue,
|
179 |
+
server_port=args.port,
|
180 |
+
share=args.share,
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == '__main__':
|
185 |
+
main()
|