Spaces:
Running
Running
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
import os, sys | |
import numpy as np | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
class SEBlock(nn.Module): | |
def __init__(self, in_channels, reduction=8, bias=False): | |
super(SEBlock, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1, 1, 0, bias=bias) | |
self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1, 1, 0, bias=bias) | |
def forward(self, x): | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
x0 = torch.mean(x, dim=(2, 3), keepdim=True) | |
x0 = self.conv1(x0) | |
x0 = F.relu(x0, inplace=True) | |
x0 = self.conv2(x0) | |
x0 = torch.sigmoid(x0) | |
x = torch.mul(x, x0) | |
return x | |
def forward_mean(self, x, x0): | |
x0 = self.conv1(x0) | |
x0 = F.relu(x0, inplace=True) | |
x0 = self.conv2(x0) | |
x0 = torch.sigmoid(x0) | |
x = torch.mul(x, x0) | |
return x | |
class UNetConv(nn.Module): | |
def __init__(self, in_channels, mid_channels, out_channels, se): | |
super(UNetConv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, mid_channels, 3, 1, 0), | |
nn.LeakyReLU(0.1, inplace=True), | |
nn.Conv2d(mid_channels, out_channels, 3, 1, 0), | |
nn.LeakyReLU(0.1, inplace=True), | |
) | |
if se: | |
self.seblock = SEBlock(out_channels, reduction=8, bias=True) | |
else: | |
self.seblock = None | |
def forward(self, x): | |
z = self.conv(x) | |
if self.seblock is not None: | |
z = self.seblock(z) | |
return z | |
class UNet1(nn.Module): | |
def __init__(self, in_channels, out_channels, deconv): | |
super(UNet1, self).__init__() | |
self.conv1 = UNetConv(in_channels, 32, 64, se=False) | |
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0) | |
self.conv2 = UNetConv(64, 128, 64, se=True) | |
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0) | |
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0) | |
if deconv: | |
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3) | |
else: | |
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0) | |
for m in self.modules(): | |
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv1_down(x1) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x2 = self.conv2(x2) | |
x2 = self.conv2_up(x2) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x1 = F.pad(x1, (-4, -4, -4, -4)) | |
x3 = self.conv3(x1 + x2) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
z = self.conv_bottom(x3) | |
return z | |
def forward_a(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv1_down(x1) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x2 = self.conv2.conv(x2) | |
return x1, x2 | |
def forward_b(self, x1, x2): | |
x2 = self.conv2_up(x2) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x1 = F.pad(x1, (-4, -4, -4, -4)) | |
x3 = self.conv3(x1 + x2) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
z = self.conv_bottom(x3) | |
return z | |
class UNet1x3(nn.Module): | |
def __init__(self, in_channels, out_channels, deconv): | |
super(UNet1x3, self).__init__() | |
self.conv1 = UNetConv(in_channels, 32, 64, se=False) | |
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0) | |
self.conv2 = UNetConv(64, 128, 64, se=True) | |
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0) | |
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0) | |
if deconv: | |
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 5, 3, 2) | |
else: | |
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0) | |
for m in self.modules(): | |
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv1_down(x1) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x2 = self.conv2(x2) | |
x2 = self.conv2_up(x2) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x1 = F.pad(x1, (-4, -4, -4, -4)) | |
x3 = self.conv3(x1 + x2) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
z = self.conv_bottom(x3) | |
return z | |
def forward_a(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv1_down(x1) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x2 = self.conv2.conv(x2) | |
return x1, x2 | |
def forward_b(self, x1, x2): | |
x2 = self.conv2_up(x2) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x1 = F.pad(x1, (-4, -4, -4, -4)) | |
x3 = self.conv3(x1 + x2) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
z = self.conv_bottom(x3) | |
return z | |
class UNet2(nn.Module): | |
def __init__(self, in_channels, out_channels, deconv): | |
super(UNet2, self).__init__() | |
self.conv1 = UNetConv(in_channels, 32, 64, se=False) | |
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0) | |
self.conv2 = UNetConv(64, 64, 128, se=True) | |
self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0) | |
self.conv3 = UNetConv(128, 256, 128, se=True) | |
self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0) | |
self.conv4 = UNetConv(128, 64, 64, se=True) | |
self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0) | |
self.conv5 = nn.Conv2d(64, 64, 3, 1, 0) | |
if deconv: | |
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3) | |
else: | |
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0) | |
for m in self.modules(): | |
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv1_down(x1) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x2 = self.conv2(x2) | |
x3 = self.conv2_down(x2) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
x3 = self.conv3(x3) | |
x3 = self.conv3_up(x3) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
x2 = F.pad(x2, (-4, -4, -4, -4)) | |
x4 = self.conv4(x2 + x3) | |
x4 = self.conv4_up(x4) | |
x4 = F.leaky_relu(x4, 0.1, inplace=True) | |
x1 = F.pad(x1, (-16, -16, -16, -16)) | |
x5 = self.conv5(x1 + x4) | |
x5 = F.leaky_relu(x5, 0.1, inplace=True) | |
z = self.conv_bottom(x5) | |
return z | |
def forward_a(self, x): # conv234结尾有se | |
x1 = self.conv1(x) | |
x2 = self.conv1_down(x1) | |
x2 = F.leaky_relu(x2, 0.1, inplace=True) | |
x2 = self.conv2.conv(x2) | |
return x1, x2 | |
def forward_b(self, x2): # conv234结尾有se | |
x3 = self.conv2_down(x2) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
x3 = self.conv3.conv(x3) | |
return x3 | |
def forward_c(self, x2, x3): # conv234结尾有se | |
x3 = self.conv3_up(x3) | |
x3 = F.leaky_relu(x3, 0.1, inplace=True) | |
x2 = F.pad(x2, (-4, -4, -4, -4)) | |
x4 = self.conv4.conv(x2 + x3) | |
return x4 | |
def forward_d(self, x1, x4): # conv234结尾有se | |
x4 = self.conv4_up(x4) | |
x4 = F.leaky_relu(x4, 0.1, inplace=True) | |
x1 = F.pad(x1, (-16, -16, -16, -16)) | |
x5 = self.conv5(x1 + x4) | |
x5 = F.leaky_relu(x5, 0.1, inplace=True) | |
z = self.conv_bottom(x5) | |
return z | |
class UpCunet2x(nn.Module): # 完美tile,全程无损 | |
def __init__(self, in_channels=3, out_channels=3): | |
super(UpCunet2x, self).__init__() | |
self.unet1 = UNet1(in_channels, out_channels, deconv=True) | |
self.unet2 = UNet2(in_channels, out_channels, deconv=False) | |
def forward(self, x, tile_mode): # 1.7G | |
n, c, h0, w0 = x.shape | |
if (tile_mode == 0): # 不tile | |
ph = ((h0 - 1) // 2 + 1) * 2 | |
pw = ((w0 - 1) // 2 + 1) * 2 | |
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect') # 需要保证被2整除 | |
x = self.unet1.forward(x) | |
x0 = self.unet2.forward(x) | |
x1 = F.pad(x, (-20, -20, -20, -20)) | |
x = torch.add(x0, x1) | |
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 2, :w0 * 2] | |
return x | |
elif (tile_mode == 1): # 对长边减半 | |
if (w0 >= h0): | |
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除 | |
crop_size_h = (h0 - 1) // 2 * 2 + 2 # 能被2整除 | |
else: | |
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除 | |
crop_size_w = (w0 - 1) // 2 * 2 + 2 # 能被2整除 | |
crop_size = (crop_size_h, crop_size_w) # 6.6G | |
elif (tile_mode == 2): # hw都减半 | |
crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2) # 5.6G | |
elif (tile_mode == 3): # hw都三分之一 | |
crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3) # 4.2G | |
elif (tile_mode == 4): # hw都四分之一 | |
crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4) # 3.7G | |
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0] | |
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1] | |
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect') | |
n, c, h, w = x.shape | |
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device) | |
if ("Half" in x.type()): | |
se_mean0 = se_mean0.half() | |
n_patch = 0 | |
tmp_dict = {} | |
opt_res_dict = {} | |
for i in range(0, h - 36, crop_size[0]): | |
tmp_dict[i] = {} | |
for j in range(0, w - 36, crop_size[1]): | |
x_crop = x[:, :, i:i + crop_size[0] + 36, j:j + crop_size[1] + 36] | |
n, c1, h1, w1 = x_crop.shape | |
tmp0, x_crop = self.unet1.forward_a(x_crop) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True) | |
se_mean0 += tmp_se_mean | |
n_patch += 1 | |
tmp_dict[i][j] = (tmp0, x_crop) | |
se_mean0 /= n_patch | |
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean1 = se_mean1.half() | |
for i in range(0, h - 36, crop_size[0]): | |
for j in range(0, w - 36, crop_size[1]): | |
tmp0, x_crop = tmp_dict[i][j] | |
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0) | |
opt_unet1 = self.unet1.forward_b(tmp0, x_crop) | |
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True) | |
se_mean1 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2) | |
se_mean1 /= n_patch | |
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean0 = se_mean0.half() | |
for i in range(0, h - 36, crop_size[0]): | |
for j in range(0, w - 36, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j] | |
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1) | |
tmp_x3 = self.unet2.forward_b(tmp_x2) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True) | |
se_mean0 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3) | |
se_mean0 /= n_patch | |
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean1 = se_mean1.half() | |
for i in range(0, h - 36, crop_size[0]): | |
for j in range(0, w - 36, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j] | |
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0) | |
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True) | |
se_mean1 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4) | |
se_mean1 /= n_patch | |
for i in range(0, h - 36, crop_size[0]): | |
opt_res_dict[i] = {} | |
for j in range(0, w - 36, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j] | |
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1) | |
x0 = self.unet2.forward_d(tmp_x1, tmp_x4) | |
x1 = F.pad(opt_unet1, (-20, -20, -20, -20)) | |
x_crop = torch.add(x0, x1) # x0是unet2的最终输出 | |
opt_res_dict[i][j] = x_crop | |
del tmp_dict | |
torch.cuda.empty_cache() | |
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72)).to(x.device) | |
if ("Half" in x.type()): | |
res = res.half() | |
for i in range(0, h - 36, crop_size[0]): | |
for j in range(0, w - 36, crop_size[1]): | |
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = opt_res_dict[i][j] | |
del opt_res_dict | |
torch.cuda.empty_cache() | |
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 2, :w0 * 2] | |
return res # | |
class UpCunet3x(nn.Module): # 完美tile,全程无损 | |
def __init__(self, in_channels=3, out_channels=3): | |
super(UpCunet3x, self).__init__() | |
self.unet1 = UNet1x3(in_channels, out_channels, deconv=True) | |
self.unet2 = UNet2(in_channels, out_channels, deconv=False) | |
def forward(self, x, tile_mode): # 1.7G | |
n, c, h0, w0 = x.shape | |
if (tile_mode == 0): # 不tile | |
ph = ((h0 - 1) // 4 + 1) * 4 | |
pw = ((w0 - 1) // 4 + 1) * 4 | |
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect') # 需要保证被2整除 | |
x = self.unet1.forward(x) | |
x0 = self.unet2.forward(x) | |
x1 = F.pad(x, (-20, -20, -20, -20)) | |
x = torch.add(x0, x1) | |
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 3, :w0 * 3] | |
return x | |
elif (tile_mode == 1): # 对长边减半 | |
if (w0 >= h0): | |
crop_size_w = ((w0 - 1) // 8 * 8 + 8) // 2 # 减半后能被4整除,所以要先被8整除 | |
crop_size_h = (h0 - 1) // 4 * 4 + 4 # 能被4整除 | |
else: | |
crop_size_h = ((h0 - 1) // 8 * 8 + 8) // 2 # 减半后能被4整除,所以要先被8整除 | |
crop_size_w = (w0 - 1) // 4 * 4 + 4 # 能被4整除 | |
crop_size = (crop_size_h, crop_size_w) # 6.6G | |
elif (tile_mode == 2): # hw都减半 | |
crop_size = (((h0 - 1) // 8 * 8 + 8) // 2, ((w0 - 1) // 8 * 8 + 8) // 2) # 5.6G | |
elif (tile_mode == 3): # hw都三分之一 | |
crop_size = (((h0 - 1) // 12 * 12 + 12) // 3, ((w0 - 1) // 12 * 12 + 12) // 3) # 4.2G | |
elif (tile_mode == 4): # hw都四分之一 | |
crop_size = (((h0 - 1) // 16 * 16 + 16) // 4, ((w0 - 1) // 16 * 16 + 16) // 4) # 3.7G | |
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0] | |
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1] | |
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect') | |
n, c, h, w = x.shape | |
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device) | |
if ("Half" in x.type()): | |
se_mean0 = se_mean0.half() | |
n_patch = 0 | |
tmp_dict = {} | |
opt_res_dict = {} | |
for i in range(0, h - 28, crop_size[0]): | |
tmp_dict[i] = {} | |
for j in range(0, w - 28, crop_size[1]): | |
x_crop = x[:, :, i:i + crop_size[0] + 28, j:j + crop_size[1] + 28] | |
n, c1, h1, w1 = x_crop.shape | |
tmp0, x_crop = self.unet1.forward_a(x_crop) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True) | |
se_mean0 += tmp_se_mean | |
n_patch += 1 | |
tmp_dict[i][j] = (tmp0, x_crop) | |
se_mean0 /= n_patch | |
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean1 = se_mean1.half() | |
for i in range(0, h - 28, crop_size[0]): | |
for j in range(0, w - 28, crop_size[1]): | |
tmp0, x_crop = tmp_dict[i][j] | |
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0) | |
opt_unet1 = self.unet1.forward_b(tmp0, x_crop) | |
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True) | |
se_mean1 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2) | |
se_mean1 /= n_patch | |
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean0 = se_mean0.half() | |
for i in range(0, h - 28, crop_size[0]): | |
for j in range(0, w - 28, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j] | |
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1) | |
tmp_x3 = self.unet2.forward_b(tmp_x2) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True) | |
se_mean0 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3) | |
se_mean0 /= n_patch | |
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean1 = se_mean1.half() | |
for i in range(0, h - 28, crop_size[0]): | |
for j in range(0, w - 28, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j] | |
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0) | |
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True) | |
se_mean1 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4) | |
se_mean1 /= n_patch | |
for i in range(0, h - 28, crop_size[0]): | |
opt_res_dict[i] = {} | |
for j in range(0, w - 28, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j] | |
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1) | |
x0 = self.unet2.forward_d(tmp_x1, tmp_x4) | |
x1 = F.pad(opt_unet1, (-20, -20, -20, -20)) | |
x_crop = torch.add(x0, x1) # x0是unet2的最终输出 | |
opt_res_dict[i][j] = x_crop # | |
del tmp_dict | |
torch.cuda.empty_cache() | |
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84)).to(x.device) | |
if ("Half" in x.type()): | |
res = res.half() | |
for i in range(0, h - 28, crop_size[0]): | |
for j in range(0, w - 28, crop_size[1]): | |
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = opt_res_dict[i][j] | |
del opt_res_dict | |
torch.cuda.empty_cache() | |
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 3, :w0 * 3] | |
return res | |
class UpCunet4x(nn.Module): # 完美tile,全程无损 | |
def __init__(self, in_channels=3, out_channels=3): | |
super(UpCunet4x, self).__init__() | |
self.unet1 = UNet1(in_channels, 64, deconv=True) | |
self.unet2 = UNet2(64, 64, deconv=False) | |
self.ps = nn.PixelShuffle(2) | |
self.conv_final = nn.Conv2d(64, 12, 3, 1, padding=0, bias=True) | |
def forward(self, x, tile_mode): | |
n, c, h0, w0 = x.shape | |
x00 = x | |
if (tile_mode == 0): # 不tile | |
ph = ((h0 - 1) // 2 + 1) * 2 | |
pw = ((w0 - 1) // 2 + 1) * 2 | |
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect') # 需要保证被2整除 | |
x = self.unet1.forward(x) | |
x0 = self.unet2.forward(x) | |
x1 = F.pad(x, (-20, -20, -20, -20)) | |
x = torch.add(x0, x1) | |
x = self.conv_final(x) | |
x = F.pad(x, (-1, -1, -1, -1)) | |
x = self.ps(x) | |
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 4, :w0 * 4] | |
x += F.interpolate(x00, scale_factor=4, mode='nearest') | |
return x | |
elif (tile_mode == 1): # 对长边减半 | |
if (w0 >= h0): | |
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除 | |
crop_size_h = (h0 - 1) // 2 * 2 + 2 # 能被2整除 | |
else: | |
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除 | |
crop_size_w = (w0 - 1) // 2 * 2 + 2 # 能被2整除 | |
crop_size = (crop_size_h, crop_size_w) # 6.6G | |
elif (tile_mode == 2): # hw都减半 | |
crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2) # 5.6G | |
elif (tile_mode == 3): # hw都三分之一 | |
crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3) # 4.1G | |
elif (tile_mode == 4): # hw都四分之一 | |
crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4) # 3.7G | |
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0] | |
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1] | |
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect') | |
n, c, h, w = x.shape | |
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device) | |
if ("Half" in x.type()): | |
se_mean0 = se_mean0.half() | |
n_patch = 0 | |
tmp_dict = {} | |
opt_res_dict = {} | |
for i in range(0, h - 38, crop_size[0]): | |
tmp_dict[i] = {} | |
for j in range(0, w - 38, crop_size[1]): | |
x_crop = x[:, :, i:i + crop_size[0] + 38, j:j + crop_size[1] + 38] | |
n, c1, h1, w1 = x_crop.shape | |
tmp0, x_crop = self.unet1.forward_a(x_crop) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True) | |
se_mean0 += tmp_se_mean | |
n_patch += 1 | |
tmp_dict[i][j] = (tmp0, x_crop) | |
se_mean0 /= n_patch | |
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean1 = se_mean1.half() | |
for i in range(0, h - 38, crop_size[0]): | |
for j in range(0, w - 38, crop_size[1]): | |
tmp0, x_crop = tmp_dict[i][j] | |
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0) | |
opt_unet1 = self.unet1.forward_b(tmp0, x_crop) | |
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True) | |
se_mean1 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2) | |
se_mean1 /= n_patch | |
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean0 = se_mean0.half() | |
for i in range(0, h - 38, crop_size[0]): | |
for j in range(0, w - 38, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j] | |
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1) | |
tmp_x3 = self.unet2.forward_b(tmp_x2) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True) | |
se_mean0 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3) | |
se_mean0 /= n_patch | |
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64 | |
if ("Half" in x.type()): | |
se_mean1 = se_mean1.half() | |
for i in range(0, h - 38, crop_size[0]): | |
for j in range(0, w - 38, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j] | |
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0) | |
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3) | |
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor | |
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half() | |
else: | |
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True) | |
se_mean1 += tmp_se_mean | |
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4) | |
se_mean1 /= n_patch | |
for i in range(0, h - 38, crop_size[0]): | |
opt_res_dict[i] = {} | |
for j in range(0, w - 38, crop_size[1]): | |
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j] | |
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1) | |
x0 = self.unet2.forward_d(tmp_x1, tmp_x4) | |
x1 = F.pad(opt_unet1, (-20, -20, -20, -20)) | |
x_crop = torch.add(x0, x1) # x0是unet2的最终输出 | |
x_crop = self.conv_final(x_crop) | |
x_crop = F.pad(x_crop, (-1, -1, -1, -1)) | |
x_crop = self.ps(x_crop) | |
opt_res_dict[i][j] = x_crop | |
del tmp_dict | |
torch.cuda.empty_cache() | |
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152)).to(x.device) | |
if ("Half" in x.type()): | |
res = res.half() | |
for i in range(0, h - 38, crop_size[0]): | |
for j in range(0, w - 38, crop_size[1]): | |
# print(opt_res_dict[i][j].shape,res[:, :, i * 4:i * 4 + h1 * 4 - 144, j * 4:j * 4 + w1 * 4 - 144].shape) | |
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = opt_res_dict[i][j] | |
del opt_res_dict | |
torch.cuda.empty_cache() | |
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 4, :w0 * 4] | |
res += F.interpolate(x00, scale_factor=4, mode='nearest') | |
return res # | |
class RealWaifuUpScaler(object): | |
def __init__(self, scale, weight_path, half, device): | |
weight = torch.load(weight_path, map_location="cpu") | |
self.model = eval("UpCunet%sx" % scale)() | |
if (half == True): | |
self.model = self.model.half().to(device) | |
else: | |
self.model = self.model.to(device) | |
self.model.load_state_dict(weight, strict=True) | |
self.model.eval() | |
self.half = half | |
self.device = device | |
def np2tensor(self, np_frame): | |
if (self.half == False): | |
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).float() / 255 | |
else: | |
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).half() / 255 | |
def tensor2np(self, tensor): | |
if (self.half == False): | |
return ( | |
np.transpose((tensor.data.squeeze() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(), (1, 2, 0))) | |
else: | |
return (np.transpose((tensor.data.squeeze().float() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(), | |
(1, 2, 0))) | |
def __call__(self, frame, tile_mode): | |
with torch.no_grad(): | |
tensor = self.np2tensor(frame) | |
result = self.tensor2np(self.model(tensor, tile_mode)) | |
return result | |
if __name__ == "__main__": | |
###########inference_img | |
import time, cv2, sys | |
from time import time as ttime | |
for weight_path, scale in [("weights_v3/up2x-latest-denoise3x.pth", 2), ("weights_v3/up3x-latest-denoise3x.pth", 3), | |
("weights_v3/up4x-latest-denoise3x.pth", 4)]: | |
for tile_mode in [0, 1, 2, 3, 4]: | |
upscaler2x = RealWaifuUpScaler(scale, weight_path, half=True, device="cuda:0") | |
input_dir = "%s/input_dir1" % root_path | |
output_dir = "%s/opt-dir-all-test" % root_path | |
os.makedirs(output_dir, exist_ok=True) | |
for name in os.listdir(input_dir): | |
print(name) | |
tmp = name.split(".") | |
inp_path = os.path.join(input_dir, name) | |
suffix = tmp[-1] | |
prefix = ".".join(tmp[:-1]) | |
tmp_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix)) | |
print(inp_path, tmp_path) | |
# 支持中文路径 | |
# os.link(inp_path, tmp_path)#win用硬链接 | |
os.symlink(inp_path, tmp_path) # linux用软链接 | |
frame = cv2.imread(tmp_path)[:, :, [2, 1, 0]] | |
t0 = ttime() | |
result = upscaler2x(frame, tile_mode=tile_mode)[:, :, ::-1] | |
t1 = ttime() | |
print(prefix, "done", t1 - t0) | |
tmp_opt_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix)) | |
cv2.imwrite(tmp_opt_path, result) | |
n = 0 | |
while (1): | |
if (n == 0): | |
suffix = "_%sx_tile%s.png" % (scale, tile_mode) | |
else: | |
suffix = "_%sx_tile%s_%s.png" % (scale, tile_mode, n) # | |
if (os.path.exists(os.path.join(output_dir, prefix + suffix)) == False): | |
break | |
else: | |
n += 1 | |
final_opt_path = os.path.join(output_dir, prefix + suffix) | |
os.rename(tmp_opt_path, final_opt_path) | |
os.remove(tmp_path) | |