Spaces:
Running
Running
# import gradio as gr | |
import gradio | |
# import lmdb | |
# import base64 | |
# import io | |
# import random | |
# import time | |
import json | |
import copy | |
# import sqlite3 | |
from urllib.parse import urljoin | |
import openai | |
DEFAULT_PROMPT = [ | |
["system", "You(assistant) are a helpful AI assistant."], | |
] | |
# def get_settings(old_state): | |
# db_path = './my_app_state' | |
# env = lmdb.open(db_path, max_dbs=2*1024*1024) | |
# # print(env.stat()) | |
# txn = env.begin() | |
# saved_api_key = txn.get(key=b'api_key').decode('utf-8') or '' | |
# txn.commit() | |
# env.close() | |
# new_state = copy.deepcopy(old_state) or {} | |
# new_state['api_key'] = saved_api_key | |
# return new_state, saved_api_key | |
# def save_settings(old_state, api_key_text): | |
# db_path = './my_app_state' | |
# env = lmdb.open(db_path, max_dbs=2*1024*1024) | |
# # print(env.stat()) | |
# txn = env.begin(write=True) | |
# txn.put(key=b'api_key', value=api_key_text.encode('utf-8')) | |
# # 提交事务 | |
# txn.commit() | |
# return get_settings(old_state) | |
def on_click_send_btn( | |
old_state, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log, | |
chat_model, temperature, top_p, choices_num, stream, max_tokens, presence_penalty, frequency_penalty, logit_bias, | |
): | |
print('\n\n\n\n\n') | |
print(prompt_table) | |
prompt_table = prompt_table or [] | |
chat_log = chat_log or [] | |
chat_log_md = '' | |
if chat_use_prompt: | |
chat_log_md += '<center>(prompt)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) | |
chat_log_md += '\n---\n' | |
if True: | |
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) | |
chat_log_md += '\n---\n' | |
# if chat_input=='': | |
# return old_state, chat_log, chat_log_md, None, None, chat_input | |
print('\n') | |
print(chat_input) | |
print('') | |
try: | |
logit_bias_json = json.dumps(logit_bias) if logit_bias else None | |
except: | |
return old_state, chat_log, chat_log_md, None, None, chat_input | |
new_state = copy.deepcopy(old_state) or {} | |
req_hist = copy.deepcopy(prompt_table) if chat_use_prompt else [] | |
if chat_use_history: | |
for hh in (chat_log or []): | |
req_hist.append(hh) | |
if chat_input and chat_input!="": | |
req_hist.append([(chat_input_role or 'user'), chat_input]) | |
openai.api_key = api_key_text | |
props = { | |
'model': chat_model, | |
'messages': [xx for xx in map(lambda it: {'role':it[0], 'content':it[1]}, req_hist)], | |
'temperature': temperature, | |
'top_p': top_p, | |
'n': choices_num, | |
'stream': stream, | |
'presence_penalty': presence_penalty, | |
'frequency_penalty': frequency_penalty, | |
} | |
if max_tokens>0: | |
props['max_tokens'] = max_tokens | |
if logit_bias_json is not None: | |
props['logit_bias'] = logit_bias_json | |
props_json = json.dumps(props) | |
try: | |
completion = openai.ChatCompletion.create(**props) | |
print('') | |
print(completion.choices) | |
the_response_role = completion.choices[0].message.role | |
the_response = completion.choices[0].message.content | |
print(the_response) | |
print('') | |
chat_last_resp = json.dumps(completion.__dict__) | |
chat_last_resp_dict = json.loads(chat_last_resp) | |
chat_last_resp_dict['api_key'] = "hidden by UI" | |
chat_last_resp_dict['organization'] = "hidden by UI" | |
chat_last_resp = json.dumps(chat_last_resp_dict) | |
chat_log_md = '' | |
if chat_use_prompt: | |
chat_log_md += '<center>(prompt)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) | |
chat_log_md += '\n---\n' | |
if True: | |
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) | |
chat_log_md += '\n---\n' | |
if chat_input and chat_input!="": | |
chat_log.append([(chat_input_role or 'user'), chat_input]) | |
chat_log_md += f"##### `{(chat_input_role or 'user')}`\n\n{chat_input}\n\n" | |
chat_log.append([the_response_role, the_response]) | |
chat_log_md += f"##### `{the_response_role}`\n\n{the_response}\n\n" | |
return new_state, chat_log, chat_log_md, chat_last_resp, props_json, '' | |
except Exception as error: | |
print(error) | |
chat_log_md = '' | |
if chat_use_prompt: | |
chat_log_md += '<center>(prompt)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) | |
chat_log_md += '\n---\n' | |
if True: | |
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) | |
chat_log_md += '\n---\n' | |
# chat_log_md = '' | |
# chat_log_md = "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) if chat_use_prompt else '' | |
# chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", hist)]) | |
chat_log_md += "\n" | |
chat_log_md += str(error) | |
return new_state, chat_log, chat_log_md, None, props_json, chat_input | |
def clear_history(): | |
return [], "" | |
css = """ | |
.table-wrap .cell-wrap input {min-width:80%} | |
#api-key-textbox textarea {filter:blur(8px); transition: filter 0.25s} | |
#api-key-textbox textarea:focus {filter:none} | |
""" | |
with gradio.Blocks(title="ChatGPT", css=css) as demo: | |
global_state = gradio.State(value={}) | |
# https://gradio.app/docs | |
# https://platform.openai.com/docs/api-reference/chat/create | |
with gradio.Tab("ChatGPT"): | |
with gradio.Row(): | |
with gradio.Column(scale=10): | |
gradio.Markdown("Go to https://platform.openai.com/account/api-keys to get your API key.") | |
api_key_text = gradio.Textbox(label="Your API key", elem_id="api-key-textbox") | |
with gradio.Row(): | |
with gradio.Column(scale=2): | |
api_key_refresh_btn = gradio.Button("🔄 Load from browser storage") | |
api_key_refresh_btn.click( | |
# get_settings, | |
None, | |
inputs=[global_state], | |
outputs=[global_state, api_key_text], | |
api_name="load-settings", | |
_js="""(global_state, api_key_text)=>{ | |
global_state=(global_state??{}); | |
global_state['api_key_text']=localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]'); | |
return [global_state, global_state['api_key_text']]; | |
}""", | |
) | |
with gradio.Column(scale=2): | |
api_key_save_btn = gradio.Button("💾 Save to browser storage") | |
api_key_save_btn.click( | |
# save_settings, | |
None, | |
inputs=[global_state, api_key_text], | |
outputs=[global_state, api_key_text], | |
api_name="save-settings", | |
_js="""(global_state, api_key_text)=>{ | |
localStorage.setItem('[gradio][chat-gpt-ui][api_key_text]', api_key_text); | |
global_state=(global_state??{}); | |
global_state['api_key_text']=localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]'); | |
return [global_state, global_state['api_key_text']]; | |
}""", | |
) | |
with gradio.Row(): | |
with gradio.Column(scale=10): | |
with gradio.Box(): | |
prompt_table = gradio.Dataframe( | |
type='array', | |
label='Prompt', col_count=(2, 'fixed'), max_cols=2, | |
value=DEFAULT_PROMPT, headers=['role', 'content'], interactive=True, | |
) | |
gradio.Markdown("The Table above is editable. The content will be added to the beginning of the conversation (if you check 'send with prompt' as `√`). See https://platform.openai.com/docs/guides/chat/introduction .") | |
with gradio.Row(): | |
with gradio.Column(scale=4): | |
with gradio.Box(): | |
gradio.Markdown("See https://platform.openai.com/docs/api-reference/chat/create .") | |
chat_model = gradio.Dropdown(label="model", choices=[ | |
"gpt-3.5-turbo", "gpt-3.5-turbo-0301", | |
"gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314", | |
], value="gpt-3.5-turbo") | |
chat_temperature = gradio.Slider(label="temperature", value=1, minimum=0, maximum=2) | |
chat_top_p = gradio.Slider(label="top_p", value=1, minimum=0, maximum=1) | |
chat_choices_num = gradio.Slider(label="choices num(n)", value=1, minimum=1, maximum=20) | |
chat_stream = gradio.Checkbox(label="stream", value=False, visible=False) | |
chat_max_tokens = gradio.Slider(label="max_tokens", value=-1, minimum=-1, maximum=4096) | |
chat_presence_penalty = gradio.Slider(label="presence_penalty", value=0, minimum=-2, maximum=2) | |
chat_frequency_penalty = gradio.Slider(label="frequency_penalty", value=0, minimum=-2, maximum=2) | |
chat_logit_bias = gradio.Textbox(label="logit_bias", visible=False) | |
pass | |
with gradio.Column(scale=8): | |
with gradio.Row(): | |
with gradio.Column(scale=10): | |
chat_log = gradio.State() | |
with gradio.Box(): | |
chat_log_box = gradio.Markdown(label='chat history') | |
chat_input_role = gradio.Textbox(lines=1, label='role', value='user') | |
chat_input = gradio.Textbox(lines=4, label='input') | |
with gradio.Row(): | |
chat_clear_history_btn = gradio.Button("clear history") | |
chat_clear_history_btn.click(clear_history, inputs=[], outputs=[chat_log, chat_log_box]) | |
chat_use_prompt = gradio.Checkbox(label='send with prompt', value=True) | |
chat_use_history = gradio.Checkbox(label='send with history', value=True) | |
chat_send_btn = gradio.Button("send") | |
pass | |
with gradio.Row(): | |
chat_last_req = gradio.JSON(label='last request') | |
chat_last_resp = gradio.JSON(label='last response') | |
chat_send_btn.click( | |
on_click_send_btn, | |
inputs=[ | |
global_state, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log, | |
chat_model, chat_temperature, chat_top_p, chat_choices_num, chat_stream, chat_max_tokens, chat_presence_penalty, chat_frequency_penalty, chat_logit_bias, | |
], | |
outputs=[global_state, chat_log, chat_log_box, chat_last_resp, chat_last_req, chat_input], | |
api_name="click-send-btn", | |
) | |
pass | |
with gradio.Tab("Settings"): | |
gradio.Markdown('Currently nothing.') | |
pass | |
if __name__ == "__main__": | |
demo.queue(concurrency_count=20).launch() | |