File size: 17,277 Bytes
ff2b8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0a876
ff2b8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
"""Utility functions."""

import base64
import os
import subprocess
import cv2
import numpy as np

import torch

from models import MODEL_ZOO
from models import build_generator
from models import parse_gan_type

__all__ = ['postprocess', 'load_generator', 'factorize_weight',
           'HtmlPageVisualizer']

CHECKPOINT_DIR = 'checkpoints'


def to_tensor(array):
    """Converts a `numpy.ndarray` to `torch.Tensor`.

    Args:
      array: The input array to convert.

    Returns:
      A `torch.Tensor` with dtype `torch.FloatTensor` on cuda device.
    """
    assert isinstance(array, np.ndarray)
    return torch.from_numpy(array).type(torch.FloatTensor).cuda()


def postprocess(images, min_val=-1.0, max_val=1.0):
    """Post-processes images from `torch.Tensor` to `numpy.ndarray`.

    Args:
        images: A `torch.Tensor` with shape `NCHW` to process.
        min_val: The minimum value of the input tensor. (default: -1.0)
        max_val: The maximum value of the input tensor. (default: 1.0)

    Returns:
        A `numpy.ndarray` with shape `NHWC` and pixel range [0, 255].
    """
    assert isinstance(images, torch.Tensor)
    images = images.detach().cpu().numpy()
    images = (images - min_val) * 255 / (max_val - min_val)
    images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
    images = images.transpose(0, 2, 3, 1)
    return images


def load_generator(model_name):
    """Loads pre-trained generator.

    Args:
        model_name: Name of the model. Should be a key in `models.MODEL_ZOO`.

    Returns:
        A generator, which is a `torch.nn.Module`, with pre-trained weights
            loaded.

    Raises:
        KeyError: If the input `model_name` is not in `models.MODEL_ZOO`.
    """
    if model_name not in MODEL_ZOO:
        raise KeyError(f'Unknown model name `{model_name}`!')

    model_config = MODEL_ZOO[model_name].copy()
    url = model_config.pop('url')  # URL to download model if needed.

    # Build generator.
    print(f'Building generator for model `{model_name}` ...')
    generator = build_generator(**model_config)
    print(f'Finish building generator.')

    # Load pre-trained weights.
    os.makedirs(CHECKPOINT_DIR, exist_ok=True)
    checkpoint_path = os.path.join(CHECKPOINT_DIR, model_name + '.pth')
    print(f'Loading checkpoint from `{checkpoint_path}` ...')
    if not os.path.exists(checkpoint_path):
        print(f'  Downloading checkpoint from `{url}` ...')
        subprocess.call(['wget', '--quiet', '-O', checkpoint_path, url])
        print(f'  Finish downloading checkpoint.')
    checkpoint = torch.load(checkpoint_path, map_location='cpu')
    if 'generator_smooth' in checkpoint:
        generator.load_state_dict(checkpoint['generator_smooth'])
    else:
        generator.load_state_dict(checkpoint['generator'])
    #generator = generator.cuda()
    generator.eval()
    print(f'Finish loading checkpoint.')
    return generator


def parse_indices(obj, min_val=None, max_val=None):
    """Parses indices.

    The input can be a list or a tuple or a string, which is either a comma
    separated list of numbers 'a, b, c', or a dash separated range 'a - c'.
    Space in the string will be ignored.

    Args:
        obj: The input object to parse indices from.
        min_val: If not `None`, this function will check that all indices are
            equal to or larger than this value. (default: None)
        max_val: If not `None`, this function will check that all indices are
            equal to or smaller than this value. (default: None)

    Returns:
        A list of integers.

    Raises:
        If the input is invalid, i.e., neither a list or tuple, nor a string.
    """
    if obj is None or obj == '':
        indices = []
    elif isinstance(obj, int):
        indices = [obj]
    elif isinstance(obj, (list, tuple, np.ndarray)):
        indices = list(obj)
    elif isinstance(obj, str):
        indices = []
        splits = obj.replace(' ', '').split(',')
        for split in splits:
            numbers = list(map(int, split.split('-')))
            if len(numbers) == 1:
                indices.append(numbers[0])
            elif len(numbers) == 2:
                indices.extend(list(range(numbers[0], numbers[1] + 1)))
            else:
                raise ValueError(f'Unable to parse the input!')

    else:
        raise ValueError(f'Invalid type of input: `{type(obj)}`!')

    assert isinstance(indices, list)
    indices = sorted(list(set(indices)))
    for idx in indices:
        assert isinstance(idx, int)
        if min_val is not None:
            assert idx >= min_val, f'{idx} is smaller than min val `{min_val}`!'
        if max_val is not None:
            assert idx <= max_val, f'{idx} is larger than max val `{max_val}`!'

    return indices


def factorize_weight(generator, layer_idx='all'):
    """Factorizes the generator weight to get semantics boundaries.

    Args:
        generator: Generator to factorize.
        layer_idx: Indices of layers to interpret, especially for StyleGAN and
            StyleGAN2. (default: `all`)

    Returns:
        A tuple of (layers_to_interpret, semantic_boundaries, eigen_values).

    Raises:
        ValueError: If the generator type is not supported.
    """
    # Get GAN type.
    gan_type = parse_gan_type(generator)

    # Get layers.
    if gan_type == 'pggan':
        layers = [0]
    elif gan_type in ['stylegan', 'stylegan2']:
        if layer_idx == 'all':
            layers = list(range(generator.num_layers))
        else:
            layers = parse_indices(layer_idx,
                                   min_val=0,
                                   max_val=generator.num_layers - 1)

    # Factorize semantics from weight.
    weights = []
    for idx in layers:
        layer_name = f'layer{idx}'
        if gan_type == 'stylegan2' and idx == generator.num_layers - 1:
            layer_name = f'output{idx // 2}'
        if gan_type == 'pggan':
            weight = generator.__getattr__(layer_name).weight
            weight = weight.flip(2, 3).permute(1, 0, 2, 3).flatten(1)
        elif gan_type in ['stylegan', 'stylegan2']:
            weight = generator.synthesis.__getattr__(layer_name).style.weight.T
        weights.append(weight.cpu().detach().numpy())
    weight = np.concatenate(weights, axis=1).astype(np.float32)
    weight = weight / np.linalg.norm(weight, axis=0, keepdims=True)
    eigen_values, eigen_vectors = np.linalg.eig(weight.dot(weight.T))

    return layers, eigen_vectors.T, eigen_values


def get_sortable_html_header(column_name_list, sort_by_ascending=False):
    """Gets header for sortable html page.

    Basically, the html page contains a sortable table, where user can sort the
    rows by a particular column by clicking the column head.

    Example:

    column_name_list = [name_1, name_2, name_3]
    header = get_sortable_html_header(column_name_list)
    footer = get_sortable_html_footer()
    sortable_table = ...
    html_page = header + sortable_table + footer

    Args:
        column_name_list: List of column header names.
        sort_by_ascending: Default sorting order. If set as `True`, the html
            page will be sorted by ascending order when the header is clicked
            for the first time.

    Returns:
        A string, which represents for the header for a sortable html page.
    """
    header = '\n'.join([
        '<script type="text/javascript">',
        'var column_idx;',
        'var sort_by_ascending = ' + str(sort_by_ascending).lower() + ';',
        '',
        'function sorting(tbody, column_idx){',
        '    this.column_idx = column_idx;',
        '    Array.from(tbody.rows)',
        '             .sort(compareCells)',
        '             .forEach(function(row) { tbody.appendChild(row); })',
        '    sort_by_ascending = !sort_by_ascending;',
        '}',
        '',
        'function compareCells(row_a, row_b) {',
        '    var val_a = row_a.cells[column_idx].innerText;',
        '    var val_b = row_b.cells[column_idx].innerText;',
        '    var flag = sort_by_ascending ? 1 : -1;',
        '    return flag * (val_a > val_b ? 1 : -1);',
        '}',
        '</script>',
        '',
        '<html>',
        '',
        '<head>',
        '<style>',
        '    table {',
        '        border-spacing: 0;',
        '        border: 1px solid black;',
        '    }',
        '    th {',
        '        cursor: pointer;',
        '    }',
        '    th, td {',
        '        text-align: left;',
        '        vertical-align: middle;',
        '        border-collapse: collapse;',
        '        border: 0.5px solid black;',
        '        padding: 8px;',
        '    }',
        '    tr:nth-child(even) {',
        '        background-color: #d2d2d2;',
        '    }',
        '</style>',
        '</head>',
        '',
        '<body>',
        '',
        '<table>',
        '<thead>',
        '<tr>',
        ''])
    for idx, name in enumerate(column_name_list):
        header += f'    <th onclick="sorting(tbody, {idx})">{name}</th>\n'
    header += '</tr>\n'
    header += '</thead>\n'
    header += '<tbody id="tbody">\n'

    return header


def get_sortable_html_footer():
    """Gets footer for sortable html page.

    Check function `get_sortable_html_header()` for more details.
    """
    return '</tbody>\n</table>\n\n</body>\n</html>\n'


def parse_image_size(obj):
    """Parses object to a pair of image size, i.e., (width, height).

    Args:
        obj: The input object to parse image size from.

    Returns:
        A two-element tuple, indicating image width and height respectively.

    Raises:
        If the input is invalid, i.e., neither a list or tuple, nor a string.
    """
    if obj is None or obj == '':
        width = height = 0
    elif isinstance(obj, int):
        width = height = obj
    elif isinstance(obj, (list, tuple, np.ndarray)):
        numbers = tuple(obj)
        if len(numbers) == 0:
            width = height = 0
        elif len(numbers) == 1:
            width = height = numbers[0]
        elif len(numbers) == 2:
            width = numbers[0]
            height = numbers[1]
        else:
            raise ValueError(f'At most two elements for image size.')
    elif isinstance(obj, str):
        splits = obj.replace(' ', '').split(',')
        numbers = tuple(map(int, splits))
        if len(numbers) == 0:
            width = height = 0
        elif len(numbers) == 1:
            width = height = numbers[0]
        elif len(numbers) == 2:
            width = numbers[0]
            height = numbers[1]
        else:
            raise ValueError(f'At most two elements for image size.')
    else:
        raise ValueError(f'Invalid type of input: {type(obj)}!')

    return (max(0, width), max(0, height))


def encode_image_to_html_str(image, image_size=None):
    """Encodes an image to html language.
    NOTE: Input image is always assumed to be with `RGB` channel order.
    Args:
        image: The input image to encode. Should be with `RGB` channel order.
        image_size: This field is used to resize the image before encoding. `0`
            disables resizing. (default: None)
    Returns:
        A string which represents the encoded image.
    """
    if image is None:
        return ''

    assert image.ndim == 3 and image.shape[2] in [1, 3]

    # Change channel order to `BGR`, which is opencv-friendly.
    image = image[:, :, ::-1]

    # Resize the image if needed.
    width, height = parse_image_size(image_size)
    if height or width:
        height = height or image.shape[0]
        width = width or image.shape[1]
        image = cv2.resize(image, (width, height))

    # Encode the image to html-format string.
    encoded_image = cv2.imencode('.jpg', image)[1].tostring()
    encoded_image_base64 = base64.b64encode(encoded_image).decode('utf-8')
    html_str = f'<img src="data:image/jpeg;base64, {encoded_image_base64}"/>'

    return html_str


def get_grid_shape(size, row=0, col=0, is_portrait=False):
    """Gets the shape of a grid based on the size.

    This function makes greatest effort on making the output grid square if
    neither `row` nor `col` is set. If `is_portrait` is set as `False`, the
    height will always be equal to or smaller than the width. For example, if
    input `size = 16`, output shape will be `(4, 4)`; if input `size = 15`,
    output shape will be (3, 5). Otherwise, the height will always be equal to
    or larger than the width.

    Args:
        size: Size (height * width) of the target grid.
        is_portrait: Whether to return a portrait size of a landscape size.
            (default: False)

    Returns:
        A two-element tuple, representing height and width respectively.
    """
    assert isinstance(size, int)
    assert isinstance(row, int)
    assert isinstance(col, int)
    if size == 0:
        return (0, 0)

    if row > 0 and col > 0 and row * col != size:
        row = 0
        col = 0

    if row > 0 and size % row == 0:
        return (row, size // row)
    if col > 0 and size % col == 0:
        return (size // col, col)

    row = int(np.sqrt(size))
    while row > 0:
        if size % row == 0:
            col = size // row
            break
        row = row - 1

    return (col, row) if is_portrait else (row, col)


class HtmlPageVisualizer(object):
    """Defines the html page visualizer.

    This class can be used to visualize image results as html page. Basically,
    it is based on an html-format sorted table with helper functions
    `get_sortable_html_header()`, `get_sortable_html_footer()`, and
    `encode_image_to_html_str()`. To simplify the usage, specifying the
    following fields are enough to create a visualization page:

    (1) num_rows: Number of rows of the table (header-row exclusive).
    (2) num_cols: Number of columns of the table.
    (3) header contents (optional): Title of each column.

    NOTE: `grid_size` can be used to assign `num_rows` and `num_cols`
    automatically.

    Example:

    html = HtmlPageVisualizer(num_rows, num_cols)
    html.set_headers([...])
    for i in range(num_rows):
        for j in range(num_cols):
            html.set_cell(i, j, text=..., image=..., highlight=False)
    html.save('visualize.html')
    """

    def __init__(self,
                 num_rows=0,
                 num_cols=0,
                 grid_size=0,
                 is_portrait=True,
                 viz_size=None):
        if grid_size > 0:
            num_rows, num_cols = get_grid_shape(
                grid_size, row=num_rows, col=num_cols, is_portrait=is_portrait)
        assert num_rows > 0 and num_cols > 0

        self.num_rows = num_rows
        self.num_cols = num_cols
        self.viz_size = parse_image_size(viz_size)
        self.headers = ['' for _ in range(self.num_cols)]
        self.cells = [[{
            'text': '',
            'image': '',
            'highlight': False,
        } for _ in range(self.num_cols)] for _ in range(self.num_rows)]

    def set_header(self, col_idx, content):
        """Sets the content of a particular header by column index."""
        self.headers[col_idx] = content

    def set_headers(self, contents):
        """Sets the contents of all headers."""
        if isinstance(contents, str):
            contents = [contents]
        assert isinstance(contents, (list, tuple))
        assert len(contents) == self.num_cols
        for col_idx, content in enumerate(contents):
            self.set_header(col_idx, content)

    def set_cell(self, row_idx, col_idx, text='', image=None, highlight=False):
        """Sets the content of a particular cell.

        Basically, a cell contains some text as well as an image. Both text and
        image can be empty.

        Args:
            row_idx: Row index of the cell to edit.
            col_idx: Column index of the cell to edit.
            text: Text to add into the target cell. (default: None)
            image: Image to show in the target cell. Should be with `RGB`
                channel order. (default: None)
            highlight: Whether to highlight this cell. (default: False)
        """
        self.cells[row_idx][col_idx]['text'] = text
        self.cells[row_idx][col_idx]['image'] = encode_image_to_html_str(
            image, self.viz_size)
        self.cells[row_idx][col_idx]['highlight'] = bool(highlight)

    def save(self, save_path):
        """Saves the html page."""
        html = ''
        for i in range(self.num_rows):
            html += f'<tr>\n'
            for j in range(self.num_cols):
                text = self.cells[i][j]['text']
                image = self.cells[i][j]['image']
                if self.cells[i][j]['highlight']:
                    color = ' bgcolor="#FF8888"'
                else:
                    color = ''
                if text:
                    html += f'    <td{color}>{text}<br><br>{image}</td>\n'
                else:
                    html += f'    <td{color}>{image}</td>\n'
            html += f'</tr>\n'

        header = get_sortable_html_header(self.headers)
        footer = get_sortable_html_footer()

        with open(save_path, 'w') as f:
            f.write(header + html + footer)