File size: 17,276 Bytes
ff2b8e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
"""Utility functions."""
import base64
import os
import subprocess
import cv2
import numpy as np
import torch
from models import MODEL_ZOO
from models import build_generator
from models import parse_gan_type
__all__ = ['postprocess', 'load_generator', 'factorize_weight',
'HtmlPageVisualizer']
CHECKPOINT_DIR = 'checkpoints'
def to_tensor(array):
"""Converts a `numpy.ndarray` to `torch.Tensor`.
Args:
array: The input array to convert.
Returns:
A `torch.Tensor` with dtype `torch.FloatTensor` on cuda device.
"""
assert isinstance(array, np.ndarray)
return torch.from_numpy(array).type(torch.FloatTensor).cuda()
def postprocess(images, min_val=-1.0, max_val=1.0):
"""Post-processes images from `torch.Tensor` to `numpy.ndarray`.
Args:
images: A `torch.Tensor` with shape `NCHW` to process.
min_val: The minimum value of the input tensor. (default: -1.0)
max_val: The maximum value of the input tensor. (default: 1.0)
Returns:
A `numpy.ndarray` with shape `NHWC` and pixel range [0, 255].
"""
assert isinstance(images, torch.Tensor)
images = images.detach().cpu().numpy()
images = (images - min_val) * 255 / (max_val - min_val)
images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
images = images.transpose(0, 2, 3, 1)
return images
def load_generator(model_name):
"""Loads pre-trained generator.
Args:
model_name: Name of the model. Should be a key in `models.MODEL_ZOO`.
Returns:
A generator, which is a `torch.nn.Module`, with pre-trained weights
loaded.
Raises:
KeyError: If the input `model_name` is not in `models.MODEL_ZOO`.
"""
if model_name not in MODEL_ZOO:
raise KeyError(f'Unknown model name `{model_name}`!')
model_config = MODEL_ZOO[model_name].copy()
url = model_config.pop('url') # URL to download model if needed.
# Build generator.
print(f'Building generator for model `{model_name}` ...')
generator = build_generator(**model_config)
print(f'Finish building generator.')
# Load pre-trained weights.
os.makedirs(CHECKPOINT_DIR, exist_ok=True)
checkpoint_path = os.path.join(CHECKPOINT_DIR, model_name + '.pth')
print(f'Loading checkpoint from `{checkpoint_path}` ...')
if not os.path.exists(checkpoint_path):
print(f' Downloading checkpoint from `{url}` ...')
subprocess.call(['wget', '--quiet', '-O', checkpoint_path, url])
print(f' Finish downloading checkpoint.')
checkpoint = torch.load(checkpoint_path, map_location='cpu')
if 'generator_smooth' in checkpoint:
generator.load_state_dict(checkpoint['generator_smooth'])
else:
generator.load_state_dict(checkpoint['generator'])
generator = generator.cuda()
generator.eval()
print(f'Finish loading checkpoint.')
return generator
def parse_indices(obj, min_val=None, max_val=None):
"""Parses indices.
The input can be a list or a tuple or a string, which is either a comma
separated list of numbers 'a, b, c', or a dash separated range 'a - c'.
Space in the string will be ignored.
Args:
obj: The input object to parse indices from.
min_val: If not `None`, this function will check that all indices are
equal to or larger than this value. (default: None)
max_val: If not `None`, this function will check that all indices are
equal to or smaller than this value. (default: None)
Returns:
A list of integers.
Raises:
If the input is invalid, i.e., neither a list or tuple, nor a string.
"""
if obj is None or obj == '':
indices = []
elif isinstance(obj, int):
indices = [obj]
elif isinstance(obj, (list, tuple, np.ndarray)):
indices = list(obj)
elif isinstance(obj, str):
indices = []
splits = obj.replace(' ', '').split(',')
for split in splits:
numbers = list(map(int, split.split('-')))
if len(numbers) == 1:
indices.append(numbers[0])
elif len(numbers) == 2:
indices.extend(list(range(numbers[0], numbers[1] + 1)))
else:
raise ValueError(f'Unable to parse the input!')
else:
raise ValueError(f'Invalid type of input: `{type(obj)}`!')
assert isinstance(indices, list)
indices = sorted(list(set(indices)))
for idx in indices:
assert isinstance(idx, int)
if min_val is not None:
assert idx >= min_val, f'{idx} is smaller than min val `{min_val}`!'
if max_val is not None:
assert idx <= max_val, f'{idx} is larger than max val `{max_val}`!'
return indices
def factorize_weight(generator, layer_idx='all'):
"""Factorizes the generator weight to get semantics boundaries.
Args:
generator: Generator to factorize.
layer_idx: Indices of layers to interpret, especially for StyleGAN and
StyleGAN2. (default: `all`)
Returns:
A tuple of (layers_to_interpret, semantic_boundaries, eigen_values).
Raises:
ValueError: If the generator type is not supported.
"""
# Get GAN type.
gan_type = parse_gan_type(generator)
# Get layers.
if gan_type == 'pggan':
layers = [0]
elif gan_type in ['stylegan', 'stylegan2']:
if layer_idx == 'all':
layers = list(range(generator.num_layers))
else:
layers = parse_indices(layer_idx,
min_val=0,
max_val=generator.num_layers - 1)
# Factorize semantics from weight.
weights = []
for idx in layers:
layer_name = f'layer{idx}'
if gan_type == 'stylegan2' and idx == generator.num_layers - 1:
layer_name = f'output{idx // 2}'
if gan_type == 'pggan':
weight = generator.__getattr__(layer_name).weight
weight = weight.flip(2, 3).permute(1, 0, 2, 3).flatten(1)
elif gan_type in ['stylegan', 'stylegan2']:
weight = generator.synthesis.__getattr__(layer_name).style.weight.T
weights.append(weight.cpu().detach().numpy())
weight = np.concatenate(weights, axis=1).astype(np.float32)
weight = weight / np.linalg.norm(weight, axis=0, keepdims=True)
eigen_values, eigen_vectors = np.linalg.eig(weight.dot(weight.T))
return layers, eigen_vectors.T, eigen_values
def get_sortable_html_header(column_name_list, sort_by_ascending=False):
"""Gets header for sortable html page.
Basically, the html page contains a sortable table, where user can sort the
rows by a particular column by clicking the column head.
Example:
column_name_list = [name_1, name_2, name_3]
header = get_sortable_html_header(column_name_list)
footer = get_sortable_html_footer()
sortable_table = ...
html_page = header + sortable_table + footer
Args:
column_name_list: List of column header names.
sort_by_ascending: Default sorting order. If set as `True`, the html
page will be sorted by ascending order when the header is clicked
for the first time.
Returns:
A string, which represents for the header for a sortable html page.
"""
header = '\n'.join([
'<script type="text/javascript">',
'var column_idx;',
'var sort_by_ascending = ' + str(sort_by_ascending).lower() + ';',
'',
'function sorting(tbody, column_idx){',
' this.column_idx = column_idx;',
' Array.from(tbody.rows)',
' .sort(compareCells)',
' .forEach(function(row) { tbody.appendChild(row); })',
' sort_by_ascending = !sort_by_ascending;',
'}',
'',
'function compareCells(row_a, row_b) {',
' var val_a = row_a.cells[column_idx].innerText;',
' var val_b = row_b.cells[column_idx].innerText;',
' var flag = sort_by_ascending ? 1 : -1;',
' return flag * (val_a > val_b ? 1 : -1);',
'}',
'</script>',
'',
'<html>',
'',
'<head>',
'<style>',
' table {',
' border-spacing: 0;',
' border: 1px solid black;',
' }',
' th {',
' cursor: pointer;',
' }',
' th, td {',
' text-align: left;',
' vertical-align: middle;',
' border-collapse: collapse;',
' border: 0.5px solid black;',
' padding: 8px;',
' }',
' tr:nth-child(even) {',
' background-color: #d2d2d2;',
' }',
'</style>',
'</head>',
'',
'<body>',
'',
'<table>',
'<thead>',
'<tr>',
''])
for idx, name in enumerate(column_name_list):
header += f' <th onclick="sorting(tbody, {idx})">{name}</th>\n'
header += '</tr>\n'
header += '</thead>\n'
header += '<tbody id="tbody">\n'
return header
def get_sortable_html_footer():
"""Gets footer for sortable html page.
Check function `get_sortable_html_header()` for more details.
"""
return '</tbody>\n</table>\n\n</body>\n</html>\n'
def parse_image_size(obj):
"""Parses object to a pair of image size, i.e., (width, height).
Args:
obj: The input object to parse image size from.
Returns:
A two-element tuple, indicating image width and height respectively.
Raises:
If the input is invalid, i.e., neither a list or tuple, nor a string.
"""
if obj is None or obj == '':
width = height = 0
elif isinstance(obj, int):
width = height = obj
elif isinstance(obj, (list, tuple, np.ndarray)):
numbers = tuple(obj)
if len(numbers) == 0:
width = height = 0
elif len(numbers) == 1:
width = height = numbers[0]
elif len(numbers) == 2:
width = numbers[0]
height = numbers[1]
else:
raise ValueError(f'At most two elements for image size.')
elif isinstance(obj, str):
splits = obj.replace(' ', '').split(',')
numbers = tuple(map(int, splits))
if len(numbers) == 0:
width = height = 0
elif len(numbers) == 1:
width = height = numbers[0]
elif len(numbers) == 2:
width = numbers[0]
height = numbers[1]
else:
raise ValueError(f'At most two elements for image size.')
else:
raise ValueError(f'Invalid type of input: {type(obj)}!')
return (max(0, width), max(0, height))
def encode_image_to_html_str(image, image_size=None):
"""Encodes an image to html language.
NOTE: Input image is always assumed to be with `RGB` channel order.
Args:
image: The input image to encode. Should be with `RGB` channel order.
image_size: This field is used to resize the image before encoding. `0`
disables resizing. (default: None)
Returns:
A string which represents the encoded image.
"""
if image is None:
return ''
assert image.ndim == 3 and image.shape[2] in [1, 3]
# Change channel order to `BGR`, which is opencv-friendly.
image = image[:, :, ::-1]
# Resize the image if needed.
width, height = parse_image_size(image_size)
if height or width:
height = height or image.shape[0]
width = width or image.shape[1]
image = cv2.resize(image, (width, height))
# Encode the image to html-format string.
encoded_image = cv2.imencode('.jpg', image)[1].tostring()
encoded_image_base64 = base64.b64encode(encoded_image).decode('utf-8')
html_str = f'<img src="data:image/jpeg;base64, {encoded_image_base64}"/>'
return html_str
def get_grid_shape(size, row=0, col=0, is_portrait=False):
"""Gets the shape of a grid based on the size.
This function makes greatest effort on making the output grid square if
neither `row` nor `col` is set. If `is_portrait` is set as `False`, the
height will always be equal to or smaller than the width. For example, if
input `size = 16`, output shape will be `(4, 4)`; if input `size = 15`,
output shape will be (3, 5). Otherwise, the height will always be equal to
or larger than the width.
Args:
size: Size (height * width) of the target grid.
is_portrait: Whether to return a portrait size of a landscape size.
(default: False)
Returns:
A two-element tuple, representing height and width respectively.
"""
assert isinstance(size, int)
assert isinstance(row, int)
assert isinstance(col, int)
if size == 0:
return (0, 0)
if row > 0 and col > 0 and row * col != size:
row = 0
col = 0
if row > 0 and size % row == 0:
return (row, size // row)
if col > 0 and size % col == 0:
return (size // col, col)
row = int(np.sqrt(size))
while row > 0:
if size % row == 0:
col = size // row
break
row = row - 1
return (col, row) if is_portrait else (row, col)
class HtmlPageVisualizer(object):
"""Defines the html page visualizer.
This class can be used to visualize image results as html page. Basically,
it is based on an html-format sorted table with helper functions
`get_sortable_html_header()`, `get_sortable_html_footer()`, and
`encode_image_to_html_str()`. To simplify the usage, specifying the
following fields are enough to create a visualization page:
(1) num_rows: Number of rows of the table (header-row exclusive).
(2) num_cols: Number of columns of the table.
(3) header contents (optional): Title of each column.
NOTE: `grid_size` can be used to assign `num_rows` and `num_cols`
automatically.
Example:
html = HtmlPageVisualizer(num_rows, num_cols)
html.set_headers([...])
for i in range(num_rows):
for j in range(num_cols):
html.set_cell(i, j, text=..., image=..., highlight=False)
html.save('visualize.html')
"""
def __init__(self,
num_rows=0,
num_cols=0,
grid_size=0,
is_portrait=True,
viz_size=None):
if grid_size > 0:
num_rows, num_cols = get_grid_shape(
grid_size, row=num_rows, col=num_cols, is_portrait=is_portrait)
assert num_rows > 0 and num_cols > 0
self.num_rows = num_rows
self.num_cols = num_cols
self.viz_size = parse_image_size(viz_size)
self.headers = ['' for _ in range(self.num_cols)]
self.cells = [[{
'text': '',
'image': '',
'highlight': False,
} for _ in range(self.num_cols)] for _ in range(self.num_rows)]
def set_header(self, col_idx, content):
"""Sets the content of a particular header by column index."""
self.headers[col_idx] = content
def set_headers(self, contents):
"""Sets the contents of all headers."""
if isinstance(contents, str):
contents = [contents]
assert isinstance(contents, (list, tuple))
assert len(contents) == self.num_cols
for col_idx, content in enumerate(contents):
self.set_header(col_idx, content)
def set_cell(self, row_idx, col_idx, text='', image=None, highlight=False):
"""Sets the content of a particular cell.
Basically, a cell contains some text as well as an image. Both text and
image can be empty.
Args:
row_idx: Row index of the cell to edit.
col_idx: Column index of the cell to edit.
text: Text to add into the target cell. (default: None)
image: Image to show in the target cell. Should be with `RGB`
channel order. (default: None)
highlight: Whether to highlight this cell. (default: False)
"""
self.cells[row_idx][col_idx]['text'] = text
self.cells[row_idx][col_idx]['image'] = encode_image_to_html_str(
image, self.viz_size)
self.cells[row_idx][col_idx]['highlight'] = bool(highlight)
def save(self, save_path):
"""Saves the html page."""
html = ''
for i in range(self.num_rows):
html += f'<tr>\n'
for j in range(self.num_cols):
text = self.cells[i][j]['text']
image = self.cells[i][j]['image']
if self.cells[i][j]['highlight']:
color = ' bgcolor="#FF8888"'
else:
color = ''
if text:
html += f' <td{color}>{text}<br><br>{image}</td>\n'
else:
html += f' <td{color}>{image}</td>\n'
html += f'</tr>\n'
header = get_sortable_html_header(self.headers)
footer = get_sortable_html_footer()
with open(save_path, 'w') as f:
f.write(header + html + footer)
|