hugo flores garcia
commited on
Commit
•
05d43c6
1
Parent(s):
ee4b45b
app/interface fixes
Browse files- app.py +18 -47
- token_telephone/vamp_helper.py +1 -1
- vampnet/interface.py +6 -3
app.py
CHANGED
@@ -19,38 +19,11 @@ from vampnet import mask as pmask
|
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
interface = Interface.default()
|
22 |
-
|
23 |
-
# populate the model choices with any interface.yml files in the generated confs
|
24 |
-
MODEL_CHOICES = {
|
25 |
-
"default": {
|
26 |
-
"Interface.coarse_ckpt": str(interface.coarse_path),
|
27 |
-
"Interface.coarse2fine_ckpt": str(interface.c2f_path),
|
28 |
-
"Interface.codec_ckpt": str(interface.codec_path),
|
29 |
-
}
|
30 |
-
}
|
31 |
-
generated_confs = Path("conf/generated")
|
32 |
-
for conf_file in generated_confs.glob("*/interface.yml"):
|
33 |
-
with open(conf_file) as f:
|
34 |
-
_conf = yaml.safe_load(f)
|
35 |
-
|
36 |
-
# check if the coarse, c2f, and codec ckpts exist
|
37 |
-
# otherwise, dont' add this model choice
|
38 |
-
if not (
|
39 |
-
Path(_conf["Interface.coarse_ckpt"]).exists() and
|
40 |
-
Path(_conf["Interface.coarse2fine_ckpt"]).exists() and
|
41 |
-
Path(_conf["Interface.codec_ckpt"]).exists()
|
42 |
-
):
|
43 |
-
continue
|
44 |
-
|
45 |
-
MODEL_CHOICES[conf_file.parent.name] = _conf
|
46 |
-
|
47 |
|
48 |
def to_output(sig):
|
49 |
return sig.sample_rate, sig.cpu().detach().numpy()[0][0]
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
MAX_DURATION_S = 5
|
54 |
def load_audio(file):
|
55 |
print(file)
|
56 |
if isinstance(file, str):
|
@@ -91,6 +64,7 @@ def _vamp(
|
|
91 |
typical_mass, typical_min_tokens, top_p,
|
92 |
sample_cutoff, stretch_factor, api=False
|
93 |
):
|
|
|
94 |
t0 = time.time()
|
95 |
interface.to("cuda" if torch.cuda.is_available() else "cpu")
|
96 |
print(f"using device {interface.device}")
|
@@ -105,15 +79,15 @@ def _vamp(
|
|
105 |
sig = at.AudioSignal(input_audio, sr)
|
106 |
|
107 |
# reload the model if necessary
|
108 |
-
interface.
|
109 |
-
coarse_ckpt=MODEL_CHOICES[model_choice]["Interface.coarse_ckpt"],
|
110 |
-
c2f_ckpt=MODEL_CHOICES[model_choice]["Interface.coarse2fine_ckpt"],
|
111 |
-
)
|
112 |
|
113 |
if pitch_shift_amt != 0:
|
114 |
sig = shift_pitch(sig, pitch_shift_amt)
|
115 |
|
116 |
-
|
|
|
|
|
|
|
117 |
rand_mask_intensity=1.0,
|
118 |
prefix_s=0.0,
|
119 |
suffix_s=0.0,
|
@@ -124,29 +98,26 @@ def _vamp(
|
|
124 |
upper_codebook_mask=int(n_mask_codebooks),
|
125 |
)
|
126 |
|
127 |
-
vamp_kwargs = dict(
|
128 |
-
temperature=sampletemp,
|
129 |
-
typical_filtering=typical_filtering,
|
130 |
-
typical_mass=typical_mass,
|
131 |
-
typical_min_tokens=typical_min_tokens,
|
132 |
-
top_p=None,
|
133 |
-
seed=_seed,
|
134 |
-
sample_cutoff=1.0,
|
135 |
-
)
|
136 |
|
137 |
# save the mask as a txt file
|
138 |
interface.set_chunk_size(10.0)
|
139 |
-
|
140 |
-
|
141 |
batch_size=1 if api else 1,
|
142 |
feedback_steps=1,
|
143 |
time_stretch_factor=stretch_factor,
|
144 |
-
build_mask_kwargs=build_mask_kwargs,
|
145 |
-
vamp_kwargs=vamp_kwargs,
|
146 |
return_mask=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
print(f"vamp took {time.time() - t0} seconds")
|
149 |
|
|
|
150 |
|
151 |
return to_output(sig)
|
152 |
|
@@ -352,7 +323,7 @@ with gr.Blocks() as demo:
|
|
352 |
|
353 |
model_choice = gr.Dropdown(
|
354 |
label="model choice",
|
355 |
-
choices=list(
|
356 |
value="default",
|
357 |
visible=True
|
358 |
)
|
|
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
interface = Interface.default()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def to_output(sig):
|
24 |
return sig.sample_rate, sig.cpu().detach().numpy()[0][0]
|
25 |
|
26 |
+
MAX_DURATION_S = 10
|
|
|
|
|
27 |
def load_audio(file):
|
28 |
print(file)
|
29 |
if isinstance(file, str):
|
|
|
64 |
typical_mass, typical_min_tokens, top_p,
|
65 |
sample_cutoff, stretch_factor, api=False
|
66 |
):
|
67 |
+
|
68 |
t0 = time.time()
|
69 |
interface.to("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
print(f"using device {interface.device}")
|
|
|
79 |
sig = at.AudioSignal(input_audio, sr)
|
80 |
|
81 |
# reload the model if necessary
|
82 |
+
interface.load_finetuned(model_choice)
|
|
|
|
|
|
|
83 |
|
84 |
if pitch_shift_amt != 0:
|
85 |
sig = shift_pitch(sig, pitch_shift_amt)
|
86 |
|
87 |
+
codes = interface.encode(sig)
|
88 |
+
|
89 |
+
mask = interface.build_mask(
|
90 |
+
codes, sig,
|
91 |
rand_mask_intensity=1.0,
|
92 |
prefix_s=0.0,
|
93 |
suffix_s=0.0,
|
|
|
98 |
upper_codebook_mask=int(n_mask_codebooks),
|
99 |
)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
# save the mask as a txt file
|
103 |
interface.set_chunk_size(10.0)
|
104 |
+
codes, mask = interface.vamp(
|
105 |
+
codes, mask,
|
106 |
batch_size=1 if api else 1,
|
107 |
feedback_steps=1,
|
108 |
time_stretch_factor=stretch_factor,
|
|
|
|
|
109 |
return_mask=True,
|
110 |
+
temperature=sampletemp,
|
111 |
+
typical_filtering=typical_filtering,
|
112 |
+
typical_mass=typical_mass,
|
113 |
+
typical_min_tokens=typical_min_tokens,
|
114 |
+
top_p=None,
|
115 |
+
seed=_seed,
|
116 |
+
sample_cutoff=1.0,
|
117 |
)
|
118 |
print(f"vamp took {time.time() - t0} seconds")
|
119 |
|
120 |
+
sig = interface.decode(codes)
|
121 |
|
122 |
return to_output(sig)
|
123 |
|
|
|
323 |
|
324 |
model_choice = gr.Dropdown(
|
325 |
label="model choice",
|
326 |
+
choices=list(interface.available_models()),
|
327 |
value="default",
|
328 |
visible=True
|
329 |
)
|
token_telephone/vamp_helper.py
CHANGED
@@ -136,7 +136,7 @@ def ez_variation(
|
|
136 |
|
137 |
# save the mask as a txt file
|
138 |
interface.set_chunk_size(10.0)
|
139 |
-
sig, mask, codes = interface.
|
140 |
sig,
|
141 |
batch_size=1,
|
142 |
feedback_steps=1,
|
|
|
136 |
|
137 |
# save the mask as a txt file
|
138 |
interface.set_chunk_size(10.0)
|
139 |
+
sig, mask, codes = interface.vamp(
|
140 |
sig,
|
141 |
batch_size=1,
|
142 |
feedback_steps=1,
|
vampnet/interface.py
CHANGED
@@ -128,13 +128,16 @@ class Interface(torch.nn.Module):
|
|
128 |
@classmethod
|
129 |
def available_models(cls):
|
130 |
from . import list_finetuned
|
131 |
-
return list_finetuned()
|
132 |
|
133 |
|
134 |
def load_finetuned(self, name: str):
|
135 |
assert name in self.available_models(), f"{name} is not a valid model name"
|
136 |
-
from . import download_finetuned
|
137 |
-
|
|
|
|
|
|
|
138 |
self.reload(
|
139 |
coarse_ckpt=coarse_path,
|
140 |
c2f_ckpt=c2f_path,
|
|
|
128 |
@classmethod
|
129 |
def available_models(cls):
|
130 |
from . import list_finetuned
|
131 |
+
return list_finetuned() + ["default"]
|
132 |
|
133 |
|
134 |
def load_finetuned(self, name: str):
|
135 |
assert name in self.available_models(), f"{name} is not a valid model name"
|
136 |
+
from . import download_finetuned, download_default
|
137 |
+
if name == "default":
|
138 |
+
coarse_path, c2f_path = download_default()
|
139 |
+
else:
|
140 |
+
coarse_path, c2f_path = download_finetuned(name)
|
141 |
self.reload(
|
142 |
coarse_ckpt=coarse_path,
|
143 |
c2f_ckpt=c2f_path,
|