hysts's picture
hysts HF staff
gradio==5.0.1
b6b4690
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
# Gemma 2 2B JPN IT
Gemma-2-JPN は Gemma 2 2B を日本語で fine-tune したものです。Gemma 2 の英語での性能と同レベルの性能で日本語をサポートします。
(Gemma-2-JPN is a Gemma 2 2B model fine-tuned on Japanese text. It supports the Japanese language at the same level of performance as English-only queries on Gemma 2.)
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "google/gemma-2-2b-jpn-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.config.sliding_window = 4096
model.eval()
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = chat_history + [{"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate,
type="messages",
description=DESCRIPTION,
css_paths="style.css",
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["こんにちは、自己紹介をしてください。"],
["マシンラーニングについての詩を書いてください。"],
[
"次の文章を英語にして: Gemma-2-JPN は Gemma 2 2B を日本語で fine-tune したものです。Gemma 2 の英語での性能と同レベルの性能で日本語をサポートします。"
],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()