Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from diffusers import ( | |
StableDiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
DiffusionPipeline, | |
) | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import time | |
import psutil | |
import random | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
start_time = time.time() | |
current_steps = 25 | |
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16) | |
UPSCALER = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16) | |
UPSCALER.to("cuda") | |
# UPSCALER.enable_xformers_memory_efficient_attention() | |
class Model: | |
def __init__(self, name, path=""): | |
self.name = name | |
self.path = path | |
if path != "": | |
self.pipe_t2i = StableDiffusionPipeline.from_pretrained( | |
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER | |
) | |
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config( | |
self.pipe_t2i.scheduler.config | |
) | |
else: | |
self.pipe_t2i = None | |
models = [ | |
#Model("Stable Diffusion v1-4", "CompVis/stable-diffusion-v1-4"), | |
# Model("Stable Diffusion v1-5", "runwayml/stable-diffusion-v1-5"), | |
Model("anything-v4.0", "xyn-ai/anything-v4.0"), | |
] | |
MODELS = {m.name: m for m in models} | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def error_str(error, title="Error"): | |
return ( | |
f"""#### {title} | |
{error}""" | |
if error | |
else "" | |
) | |
def inference( | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
seed, | |
model_name, | |
): | |
print(psutil.virtual_memory()) # print memory usage | |
if seed == 0: | |
seed = random.randint(0, 2147483647) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
try: | |
low_res_image, up_res_image = txt_to_img( | |
model_name, | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
generator, | |
) | |
return low_res_image, up_res_image, f"Done. Seed: {seed}", | |
except Exception as e: | |
return None, None, error_str(e) | |
def txt_to_img( | |
model_name, | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
generator, | |
): | |
pipe = MODELS[model_name].pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
low_res_latents = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
num_inference_steps=int(steps), | |
guidance_scale=guidance, | |
generator=generator, | |
output_type="latent", | |
).images | |
with torch.no_grad(): | |
low_res_image = pipe.decode_latents(low_res_latents) | |
low_res_image = pipe.numpy_to_pil(low_res_image) | |
up_res_image = UPSCALER( | |
prompt=prompt, | |
negative_prompt=neg_prompt, | |
image=low_res_latents, | |
num_inference_steps=20, | |
guidance_scale=0, | |
generator=generator, | |
).images | |
pipe.to("cpu") | |
torch.cuda.empty_cache() | |
return low_res_image[0], up_res_image[0] | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div style="text-align: center"> | |
<h1>Anything v4 model + <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stable Diffusion Latent Upscaler</a></h1> | |
<p> | |
Demo for the <a href="https://huggingface.co/andite/anything-v4.0">Anything v4</a> model hooked with the ultra-fast <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Latent Upscaler</a> | |
</p> | |
</div> | |
<!-- | |
<p>To skip the queue, you can duplicate this Space<br> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p> | |
--> | |
</div> | |
""" | |
) | |
with gr.Column(scale=100): | |
with gr.Group(visible=False): | |
model_name = gr.Dropdown( | |
label="Model", | |
choices=[m.name for m in models], | |
value=models[0].name, | |
visible=False | |
) | |
with gr.Row(elem_id="prompt-container"): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Enter your prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
elem_id="prompt-text-input", | |
container=False, | |
) | |
neg_prompt = gr.Textbox( | |
label="Enter your negative prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
elem_id="negative-prompt-text-input", | |
container=False, | |
) | |
generate = gr.Button("Generate image", scale=0) | |
with gr.Accordion("Advanced Options", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
guidance = gr.Slider( | |
label="Guidance scale", value=7.5, maximum=15 | |
) | |
steps = gr.Slider( | |
label="Steps", | |
value=current_steps, | |
minimum=2, | |
maximum=75, | |
step=1, | |
) | |
seed = gr.Slider( | |
0, 2147483647, label="Seed (0 = random)", value=0, step=1 | |
) | |
with gr.Column(scale=100): | |
with gr.Row(): | |
with gr.Column(scale=75): | |
up_res_image = gr.Image(label="Upscaled 1024px Image", width=1024, height=1024) | |
with gr.Column(scale=25): | |
low_res_image = gr.Image(label="Original 512px Image", width=512, height=512) | |
error_output = gr.Markdown() | |
inputs = [ | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
seed, | |
model_name, | |
] | |
outputs = [low_res_image, up_res_image, error_output] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
ex = gr.Examples( | |
[ | |
["a mecha robot in a favela", "low quality", 7.5, 25, 33, models[0].name], | |
["the spirit of a tamagotchi wandering in the city of Paris", "low quality, bad render", 7.5, 50, 85, models[0].name], | |
], | |
inputs=[prompt, neg_prompt, guidance, steps, seed, model_name], | |
outputs=outputs, | |
fn=inference, | |
cache_examples=True, | |
) | |
ex.dataset.headers = [""] | |
gr.HTML( | |
""" | |
<div style="border-top: 1px solid #303030;"> | |
<br> | |
<p>Space by 🤗 Hugging Face, models by Stability AI, andite, linaqruf and others ❤️</p> | |
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p> | |
<p>This is a Demo Space For:<br> | |
<a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stability AI's Latent Upscaler</a> | |
</div> | |
""" | |
) | |
print(f"Space built in {time.time() - start_time:.2f} seconds") | |
demo.queue(api_open=False) | |
demo.launch(show_api=False) | |