|
import gradio as gr |
|
import pandas as pd |
|
|
|
mase = pd.read_csv("results/results_mase.csv") |
|
datasets = mase.dataset.unique() |
|
frameworks = mase.framework.unique() |
|
mase.set_index(["dataset", "framework"], inplace=True) |
|
|
|
data = {"Dataset": datasets} |
|
|
|
|
|
def mean(data, framework): |
|
try: |
|
return f"{round(mase.loc[data, framework].metric_error.mean(),3)} +/- {round(mase.loc[data, framework].metric_error.std(),3)}" |
|
except KeyError: |
|
return "n/a" |
|
|
|
|
|
for framework in frameworks: |
|
data.update({framework: [mean(dataset, framework) for dataset in datasets]}) |
|
|
|
df = pd.DataFrame(data=data) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# Time Series Forecasting Leaderboard |
|
|
|
This is a leaderboard of the [MASE](https://huggingface.co/spaces/evaluate-metric/mase) metric for time series forecasting problem on the different open datasets and models. |
|
|
|
The table is generated from the paper [AutoGluon–TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://github.com/autogluon/autogluon) by Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and Bernie Wang. |
|
|
|
## MASE Metric |
|
""" |
|
) |
|
gr.Dataframe(df) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|