import streamlit as st from persist import persist, load_widget_state from pathlib import Path global variable_output def main(): cs_body() def cs_body(): stateVariable = 'Model_carbon' help_text ='Provide an estimate for the carbon emissions: e.g hardware used, horus spent training, cloud provider ' st.markdown('# Environmental Impact') st.markdown('###### Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).') st.text_area("", help="Provide an estimate for the carbon emissions: e.g hardware used, horus spent training, cloud provider") left, right = st.columns([2,4]) with left: st.write("\n") st.write("\n") st.markdown('### Hardware Type:') st.write("\n") st.write("\n") #st.write("\n") st.markdown('### Hours used:') st.write("\n") st.write("\n") st.markdown('### Cloud Provider:') st.write("\n") st.write("\n") st.markdown('### Compute Region:') st.write("\n") st.write("\n") st.markdown('### Carbon Emitted:') with right: #soutput_jinja = parse_into_jinja_markdown() st.text_input("",key=persist("Model_hardware")) #st.write("\n") st.text_input("",help="sw",key=persist("hours_used")) st.text_input("",key=persist("Model_cloud_provider")) st.text_input("",key=persist("Model_cloud_region")) st.text_input("",help= 'in grams of CO2eq', key=persist("Model_c02_emitted")) ##to-do: auto calculate if __name__ == '__main__': load_widget_state() main()