File size: 20,159 Bytes
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66693d5
9b51db9
 
e1f2cc3
9b51db9
 
e1f2cc3
 
9b51db9
 
e1f2cc3
9b51db9
 
 
e1f2cc3
9b51db9
 
e1f2cc3
 
 
9b51db9
e1f2cc3
9b51db9
 
 
 
 
 
e1f2cc3
 
 
9b51db9
 
 
 
 
 
4b53042
9b51db9
 
 
 
4b53042
9b51db9
 
 
 
 
335424f
9b51db9
 
 
 
 
 
 
 
 
85cf91c
9b51db9
 
 
 
85cf91c
9b51db9
 
85cf91c
9b51db9
85cf91c
9b51db9
 
 
 
 
 
335424f
9b51db9
 
 
85cf91c
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f2cc3
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
4b53042
9b51db9
 
e1f2cc3
9b51db9
 
 
 
 
 
 
 
 
e1f2cc3
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cf91c
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import statistics

import pandas as pd
import seaborn as sns
import streamlit as st
from st_aggrid import AgGrid, GridOptionsBuilder

from .dataset_utils import HF_DESC_FIELD, HF_FEATURE_FIELD, HF_LABEL_FIELD


def sidebar_header():
    st.sidebar.markdown(
        """
    This demo showcases the [dataset metrics as we develop them](https://github.com/huggingface/DataMeasurements).
    Right now this has:
    - dynamic loading of datasets in the lib
    - fetching config and info without downloading the dataset
    - propose the list of candidate text and label features to select
    We are still working on:
    - implementing all the current tools
    """,
        unsafe_allow_html=True,
    )


def sidebar_selection(ds_name_to_dict, column_id):
    ds_names = list(ds_name_to_dict.keys())
    with st.sidebar.expander(f"Choose dataset and field {column_id}", expanded=True):
        # choose a dataset to analyze
        ds_name = st.selectbox(
            f"Choose dataset to explore{column_id}:",
            ds_names,
            index=ds_names.index("hate_speech18"),
        )
        # choose a config to analyze
        ds_configs = ds_name_to_dict[ds_name]
        config_names = list(ds_configs.keys())
        config_name = st.selectbox(
            f"Choose configuration{column_id}:",
            config_names,
            index=0,
        )
        # choose a subset of num_examples
        # TODO: Handling for multiple text features
        ds_config = ds_configs[config_name]
        text_features = ds_config[HF_FEATURE_FIELD]["string"]
        # TODO @yacine: Explain what this is doing and why eg tp[0] could = "id"
        text_field = st.selectbox(
            f"Which text feature from the{column_id} dataset would you like to analyze?",
            [("text",)]
            if ds_name == "c4"
            else [tp for tp in text_features if tp[0] != "id"],
        )
        # Choose a split and dataset size
        avail_splits = list(ds_config["splits"].keys())
        # 12.Nov note: Removing "test" because those should not be examined
        # without discussion of pros and cons, which we haven't done yet.
        if "test" in avail_splits:
            avail_splits.remove("test")
        split = st.selectbox(
            f"Which split from the{column_id} dataset would you like to analyze?",
            avail_splits,
            index=0,
        )
        label_field, label_names = (
            ds_name_to_dict[ds_name][config_name][HF_FEATURE_FIELD][HF_LABEL_FIELD][0]
            if len(
                ds_name_to_dict[ds_name][config_name][HF_FEATURE_FIELD][HF_LABEL_FIELD]
            )
            > 0
            else ((), [])
        )
        return {
            "dset_name": ds_name,
            "dset_config": config_name,
            "split_name": split,
            "text_field": text_field,
            "label_field": label_field,
            "label_names": label_names,
        }


def expander_header(dstats, ds_name_to_dict, column_id):
    with st.expander(f"Dataset Description{column_id}"):
        st.markdown(
            ds_name_to_dict[dstats.dset_name][dstats.dset_config][HF_DESC_FIELD]
        )
        st.dataframe(dstats.dset_peek)


def expander_general_stats(dstats, column_id):
    with st.expander(f"General Text Statistics{column_id}"):
        st.caption(
            "Use this widget to check whether the terms you see most represented"
            " in the dataset make sense for the goals of the dataset."
        )
        st.markdown(
            "There are {0} total words".format(str(dstats.total_words))
        )
        st.markdown(
            "There are {0} words after removing closed "
            "class words".format(str(dstats.total_open_words))
        )
        st.markdown(
            "The most common "
            "[open class words](https://dictionary.apa.org/open-class-words) "
            "and their counts are: "
        )
        st.dataframe(dstats.sorted_top_vocab_df)
        st.markdown(
            "There are {0} missing values in the dataset.".format(
                str(dstats.text_nan_count)
            )
        )
        st.markdown(
            "There are {0} duplicate items in the dataset. "
            "For more information about the duplicates, "
            "click the 'Duplicates' tab below.".format(
                str(dstats.dedup_total)
            )
        )


### Show the label distribution from the datasets
def expander_label_distribution(fig_labels, column_id):
    with st.expander(f"Label Distribution{column_id}", expanded=False):
        st.caption(
            "Use this widget to see how balanced the labels in your dataset are."
        )
        if fig_labels is not None:
            st.plotly_chart(fig_labels, use_container_width=True)
        else:
            st.markdown("No labels were found in the dataset")


def expander_text_lengths(dstats, column_id):
    _TEXT_LENGTH_CAPTION = (
        "Use this widget to identify outliers, particularly suspiciously long outliers."
    )
    with st.expander(f"Text Lengths{column_id}", expanded=False):
        st.caption(_TEXT_LENGTH_CAPTION)
        st.markdown(
            "Below, you can see how the lengths of the text instances in your dataset are distributed."
        )
        st.markdown(
            "Any unexpected peaks or valleys in the distribution may help to identify instances you want to remove or augment."
        )
        st.markdown(
            "### Here is the relative frequency of different text lengths in your dataset:"
        )
        st.plotly_chart(dstats.fig_tok_length, use_container_width=True)
        st.markdown(
            "The average length of text instances is **"
            + str(dstats.avg_length)
            + " words**, with a standard deviation of **"
            + str(dstats.std_length)
            + "**."
        )

        start_id_show_lengths = st.slider(
            f"Show the shortest sentences{column_id} starting at:",
            0,
            dstats.num_uniq_lengths,
            value=0,
            step=1,
        )
        st.dataframe(dstats.length_df[dstats.length_df["length"] == start_id_show_lengths].set_index("length"))


### Third, use a sentence embedding model
def expander_text_embeddings(
    text_dset, fig_tree, node_list, embeddings, text_field, column_id
):
    with st.expander(f"Text Embedding Clusters{column_id}", expanded=False):
        _EMBEDDINGS_CAPTION = """
        ### Hierarchical Clustering of Text Fields
        Taking in the diversity of text represented in a dataset can be
        challenging when it is made up of hundreds to thousands of sentences.
        Grouping these text items based on a measure of similarity can help
        users gain some insights into their distribution.
        The following figure shows a hierarchical clustering of the text fields
        in the dataset based on a
        [Sentence-Transformer](https://hf.co/sentence-transformers/all-mpnet-base-v2)
        model. Clusters are merged if any of the embeddings in cluster A has a
        dot product with any of the embeddings or with the centroid of cluster B
        higher than a threshold (one threshold per level, from 0.5 to 0.95).
        To explore the clusters, you can:
        - hover over a node to see the 5 most representative examples (deduplicated)
        - enter an example in the text box below to see which clusters it is most similar to
        - select a cluster by ID to show all of its examples
        """
        st.markdown(_EMBEDDINGS_CAPTION)
        st.plotly_chart(fig_tree, use_container_width=True)
        st.markdown("---\n")
        if st.checkbox(
            label="Enter text to see nearest clusters",
            key=f"search_clusters_{column_id}",
        ):
            compare_example = st.text_area(
                label="Enter some text here to see which of the clusters in the dataset it is closest to",
                key=f"search_cluster_input_{column_id}",
            )
            if compare_example != "":
                paths_to_leaves = embeddings.cached_clusters.get(
                    compare_example,
                    embeddings.find_cluster_beam(compare_example, beam_size=50),
                )
                clusters_intro = ""
                if paths_to_leaves[0][1] < 0.3:
                    clusters_intro += (
                        "**Warning: no close clusters found (best score <0.3). **"
                    )
                clusters_intro += "The closest clusters to the text entered aboce are:"
                st.markdown(clusters_intro)
                for path, score in paths_to_leaves[:5]:
                    example = text_dset[
                        node_list[path[-1]]["sorted_examples_centroid"][0][0]
                    ][text_field][:256]
                    st.write(
                        f"Cluster {path[-1]:5d} | Score: {score:.3f}  \n Example: {example}"
                    )
                show_node_default = paths_to_leaves[0][0][-1]
            else:
                show_node_default = len(node_list) // 2
        else:
            show_node_default = len(node_list) // 2
        st.markdown("---\n")
        show_node = st.selectbox(
            f"Choose a leaf node to explore in the{column_id} dataset:",
            range(len(node_list)),
            index=show_node_default,
        )
        node = node_list[show_node]
        start_id = st.slider(
            f"Show closest sentences in cluster to the centroid{column_id} starting at index:",
            0,
            len(node["sorted_examples_centroid"]) - 5,
            value=0,
            step=5,
        )
        for sid, sim in node["sorted_examples_centroid"][start_id : start_id + 5]:
            # only show the first 4 lines and the first 10000 characters
            show_text = text_dset[sid][text_field][:10000]
            show_text = "\n".join(show_text.split("\n")[:4])
            st.text(f"{sim:.3f} \t {show_text}")


### Then, show duplicates
def expander_text_duplicates(dstats, column_id):
    # TODO: Saving/loading figure
    with st.expander(f"Text Duplicates{column_id}", expanded=False):
        st.caption(
            "Use this widget to identify text strings that appear more than once."
        )
        st.markdown(
            "A model's training and testing may be negatively affected by unwarranted duplicates ([Lee et al., 2021](https://arxiv.org/abs/2107.06499))."
        )
        st.markdown("------")
        st.write(
            "### Here is the list of all the duplicated items and their counts in your dataset:"
        )
        # Eh...adding 1 because otherwise it looks too weird for duplicate counts when the value is just 1.
        if dstats.dup_counts_df is None:
            st.write("There are no duplicates in this dataset! 🥳")
        else:
            gb = GridOptionsBuilder.from_dataframe(dstats.dup_counts_df)
            gb.configure_column(
                f"text{column_id}",
                wrapText=True,
                resizable=True,
                autoHeight=True,
                min_column_width=85,
                use_container_width=True,
            )
            go = gb.build()
            AgGrid(dstats.dup_counts_df, gridOptions=go)


def expander_npmi_description(min_vocab):
    _NPMI_CAPTION = (
        "Use this widget to identify problematic biases and stereotypes in your data."
    )
    _NPMI_CAPTION1 = """
    nPMI scores for a word help to identify potentially
    problematic associations, ranked by how close the association is."""
    _NPMI_CAPTION2 = """
    nPMI bias scores for paired words help to identify how word
    associations are skewed between the selected selected words
    ([Aka et al., 2021](https://arxiv.org/abs/2103.03417)).
    """

    st.caption(_NPMI_CAPTION)
    st.markdown(_NPMI_CAPTION1)
    st.markdown(_NPMI_CAPTION2)
    st.markdown("  ")
    st.markdown(
        "You can select from gender and sexual orientation "
        "identity terms that appear in the dataset at least %s "
        "times." % min_vocab
    )
    st.markdown(
        "The resulting ranked words are those that co-occur with both "
        "identity terms.  "
    )
    st.markdown(
        "The more *positive* the score, the more associated the word is with the first identity term.  "
        "The more *negative* the score, the more associated the word is with the second identity term."
    )


### Finally, show Zipf stuff
def expander_zipf(z, zipf_fig, column_id):
    _ZIPF_CAPTION = """This shows how close the observed language is to an ideal
    natural language distribution following [Zipf's law](https://en.wikipedia.org/wiki/Zipf%27s_law),
    calculated by minimizing the [Kolmogorov-Smirnov (KS) statistic](https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test)."""

    powerlaw_eq = r"""p(x) \propto x^{- \alpha}"""
    zipf_summary = (
        "The optimal alpha based on this dataset is: **"
        + str(round(z.alpha, 2))
        + "**, with a KS distance of: **"
        + str(round(z.distance, 2))
    )
    zipf_summary += (
        "**.  This was fit with a minimum rank value of: **"
        + str(int(z.xmin))
        + "**, which is the optimal rank *beyond which* the scaling regime of the power law fits best."
    )

    alpha_warning = "Your alpha value is a bit on the high side, which means that the distribution over words in this dataset is a bit unnatural. This could be due to non-language items throughout the dataset."
    xmin_warning = "The minimum rank for this fit is a bit on the high side, which means that the frequencies of your most common words aren't distributed as would be expected by Zipf's law."
    fit_results_table = pd.DataFrame.from_dict(
        {
            r"Alpha:": [str("%.2f" % z.alpha)],
            "KS distance:": [str("%.2f" % z.distance)],
            "Min rank:": [str("%s" % int(z.xmin))],
        },
        columns=["Results"],
        orient="index",
    )
    fit_results_table.index.name = column_id
    with st.expander(
        f"Vocabulary Distribution{column_id}: Zipf's Law Fit", expanded=False
    ):
        st.caption(
            "Use this widget for the counts of different words in your dataset, measuring the difference between the observed count and the expected count under Zipf's law."
        )
        st.markdown(_ZIPF_CAPTION)
        st.write(
            """
        A Zipfian distribution follows the power law: $p(x) \propto x^{-α}$
with an ideal α value of 1."""
        )
        st.markdown(
            "In general, an alpha greater than 2 or a minimum rank greater than 10 (take with a grain of salt) means that your distribution is relativaly _unnatural_ for natural language. This can be a sign of mixed artefacts in the dataset, such as HTML markup."
        )
        st.markdown(
            "Below, you can see the counts of each word in your dataset vs. the expected number of counts following a Zipfian distribution."
        )
        st.markdown("-----")
        st.write("### Here is your dataset's Zipf results:")
        st.dataframe(fit_results_table)
        st.write(zipf_summary)
        # TODO: Nice UI version of the content in the comments.
        # st.markdown("\nThe KS test p-value is < %.2f" % z.ks_test.pvalue)
        # if z.ks_test.pvalue < 0.01:
        #    st.markdown(
        #        "\n Great news! Your data fits a powerlaw with a minimum KS " "distance of %.4f" % z.distance)
        # else:
        #    st.markdown("\n Sadly, your data does not fit a powerlaw. =(")
        # st.markdown("Checking the goodness of fit of our observed distribution")
        # st.markdown("to the hypothesized power law distribution")
        # st.markdown("using a Kolmogorov–Smirnov (KS) test.")
        st.plotly_chart(zipf_fig, use_container_width=True)
        if z.alpha > 2:
            st.markdown(alpha_warning)
        if z.xmin > 5:
            st.markdown(xmin_warning)


### Finally finally finally, show nPMI stuff.
def npmi_widget(column_id, available_terms, npmi_stats, min_vocab):
    """
    Part of the main app, but uses a user interaction so pulled out as its own f'n.
    :param use_cache:
    :param column_id:
    :param npmi_stats:
    :param min_vocab:
    :return:
    """
    with st.expander(f"Word Association{column_id}: nPMI", expanded=False):
        if len(available_terms) > 0:
            expander_npmi_description(min_vocab)
            st.markdown("-----")
            term1 = st.selectbox(
                f"What is the first term you want to select?{column_id}",
                available_terms,
            )
            term2 = st.selectbox(
                f"What is the second term you want to select?{column_id}",
                reversed(available_terms),
            )
            # We calculate/grab nPMI data based on a canonical (alphabetic)
            # subgroup ordering.
            subgroup_pair = sorted([term1, term2])
            try:
                joint_npmi_df = npmi_stats.load_or_prepare_joint_npmi(subgroup_pair)
                npmi_show(joint_npmi_df)
            except KeyError:
                st.markdown(
                    "**WARNING!** The nPMI for these terms has not been pre-computed, please re-run caching."
                )
        else:
            st.markdown(
                "No words found co-occurring with both of the selected identity terms."
            )


def npmi_show(paired_results):
    if paired_results.empty:
        st.markdown("No words that co-occur enough times for results!  Or there's a 🐛.")
    else:
        s = pd.DataFrame(paired_results.sort_values(by="npmi-bias", ascending=True))
        # s.columns=pd.MultiIndex.from_arrays([['npmi','npmi','npmi','count', 'count'],['bias','man','straight','man','straight']])
        s.index.name = "word"
        npmi_cols = s.filter(like="npmi").columns
        count_cols = s.filter(like="count").columns
        # TODO: This is very different look than the duplicates table above. Should probably standardize.
        cm = sns.palplot(sns.diverging_palette(270, 36, s=99, l=48, n=16))
        out_df = (
            s.style.background_gradient(subset=npmi_cols, cmap=cm)
            .format(subset=npmi_cols, formatter="{:,.3f}")
            .format(subset=count_cols, formatter=int)
            .set_properties(
                subset=count_cols, **{"width": "10em", "text-align": "center"}
            )
            .set_properties(**{"align": "center"})
            .set_caption(
                "nPMI scores and co-occurence counts between the selected identity terms and the words they both co-occur with"
            )
        )  # s = pd.read_excel("output.xlsx", index_col="word")
        st.write("### Here is your dataset's nPMI results:")
        st.dataframe(out_df)


### Dumping unused functions here for now
### Second, show the distribution of text perplexities
def expander_text_perplexities(text_label_df, sorted_sents_loss, fig_loss):
    with st.expander("Show text perplexities A", expanded=False):
        st.markdown("### Text perplexities A")
        st.plotly_chart(fig_loss, use_container_width=True)
        start_id_show_loss = st.slider(
            "Show highest perplexity sentences in A starting at index:",
            0,
            text_label_df.shape[0] - 5,
            value=0,
            step=5,
        )
        for lss, sent in sorted_sents_loss[start_id_show_loss : start_id_show_loss + 5]:
            st.text(f"{lss:.3f} {sent}")