Spaces:
Build error
Build error
File size: 10,531 Bytes
9b51db9 e1cd6af 9b51db9 e1cd6af 9b51db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import warnings
from pathlib import Path
import numpy as np
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
# Might be nice to print to log instead? Happens when we drop closed class.
warnings.filterwarnings(action="ignore", category=UserWarning)
# When we divide by 0 in log
np.seterr(divide="ignore")
# treating inf values as NaN as well
pd.set_option("use_inf_as_na", True)
logs = logging.getLogger(__name__)
logs.setLevel(logging.INFO)
logs.propagate = False
if not logs.handlers:
Path('./log_files').mkdir(exist_ok=True)
# Logging info to log file
file = logging.FileHandler("./log_files/npmi.log")
fileformat = logging.Formatter("%(asctime)s:%(message)s")
file.setLevel(logging.INFO)
file.setFormatter(fileformat)
# Logging debug messages to stream
stream = logging.StreamHandler()
streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
stream.setLevel(logging.WARNING)
stream.setFormatter(streamformat)
logs.addHandler(file)
logs.addHandler(stream)
_NUM_BATCHES = 500
class nPMI:
# TODO: Expand beyond pairwise
def __init__(
self,
vocab_counts_df,
tokenized_df,
tokenized_col_name="tokenized_text",
num_batches=_NUM_BATCHES,
):
logs.info("Initiating npmi class.")
logs.info("vocab is")
logs.info(vocab_counts_df)
self.vocab_counts_df = vocab_counts_df
logs.info("tokenized is")
self.tokenized_df = tokenized_df
logs.info(self.tokenized_df)
self.tokenized_col_name = tokenized_col_name
# self.mlb_list holds num batches x num_sentences
self.mlb_list = []
def binarize_words_in_sentence(self):
logs.info("Creating co-occurrence matrix for PMI calculations.")
batches = np.linspace(0, self.tokenized_df.shape[0], _NUM_BATCHES).astype(int)
i = 0
# Creates list of size (# batches x # sentences)
while i < len(batches) - 1:
# Makes a sparse matrix (shape: # sentences x # words),
# with the occurrence of each word per sentence.
mlb = MultiLabelBinarizer(classes=self.vocab_counts_df.index)
logs.info(
"%s of %s sentence binarize batches." % (str(i), str(len(batches)))
)
# Returns series: batch size x num_words
mlb_series = mlb.fit_transform(
self.tokenized_df[self.tokenized_col_name][batches[i] : batches[i + 1]]
)
i += 1
self.mlb_list.append(mlb_series)
def calc_cooccurrences(self, subgroup, subgroup_idx):
initialize = True
coo_df = None
# Big computation here! Should only happen once.
logs.info(
"Approaching big computation! Here, we binarize all words in the sentences, making a sparse matrix of sentences."
)
if not self.mlb_list:
self.binarize_words_in_sentence()
for batch_id in range(len(self.mlb_list)):
logs.info(
"%s of %s co-occurrence count batches"
% (str(batch_id), str(len(self.mlb_list)))
)
# List of all the sentences (list of vocab) in that batch
batch_sentence_row = self.mlb_list[batch_id]
# Dataframe of # sentences in batch x vocabulary size
sent_batch_df = pd.DataFrame(batch_sentence_row)
# logs.info('sent batch df is')
# logs.info(sent_batch_df)
# Subgroup counts per-sentence for the given batch
subgroup_df = sent_batch_df[subgroup_idx]
subgroup_df.columns = [subgroup]
# Remove the sentences where the count of the subgroup is 0.
# This way we have less computation & resources needs.
subgroup_df = subgroup_df[subgroup_df > 0]
logs.info("Removing 0 counts, subgroup_df is")
logs.info(subgroup_df)
mlb_subgroup_only = sent_batch_df[sent_batch_df[subgroup_idx] > 0]
logs.info("mlb subgroup only is")
logs.info(mlb_subgroup_only)
# Create cooccurrence matrix for the given subgroup and all words.
logs.info("Now we do the T.dot approach for co-occurrences")
batch_coo_df = pd.DataFrame(mlb_subgroup_only.T.dot(subgroup_df))
# Creates a batch-sized dataframe of co-occurrence counts.
# Note these could just be summed rather than be batch size.
if initialize:
coo_df = batch_coo_df
else:
coo_df = coo_df.add(batch_coo_df, fill_value=0)
logs.info("coo_df is")
logs.info(coo_df)
initialize = False
logs.info("Returning co-occurrence matrix")
logs.info(coo_df)
return pd.DataFrame(coo_df)
def calc_paired_metrics(self, subgroup_pair, subgroup_npmi_dict):
"""
Calculates nPMI metrics between paired subgroups.
Special handling for a subgroup paired with itself.
:param subgroup_npmi_dict:
:return:
"""
paired_results_dict = {"npmi": {}, "pmi": {}, "count": {}}
# Canonical ordering. This is done previously, but just in case...
subgroup1, subgroup2 = sorted(subgroup_pair)
vocab_cooc_df1, pmi_df1, npmi_df1 = subgroup_npmi_dict[subgroup1]
logs.info("vocab cooc")
logs.info(vocab_cooc_df1)
if subgroup1 == subgroup2:
shared_npmi_df = npmi_df1
shared_pmi_df = pmi_df1
shared_vocab_cooc_df = vocab_cooc_df1
else:
vocab_cooc_df2, pmi_df2, npmi_df2 = subgroup_npmi_dict[subgroup2]
logs.info("vocab cooc2")
logs.info(vocab_cooc_df2)
# Note that lsuffix and rsuffix should not come into play.
shared_npmi_df = npmi_df1.join(
npmi_df2, how="inner", lsuffix="1", rsuffix="2"
)
shared_pmi_df = pmi_df1.join(pmi_df2, how="inner", lsuffix="1", rsuffix="2")
shared_vocab_cooc_df = vocab_cooc_df1.join(
vocab_cooc_df2, how="inner", lsuffix="1", rsuffix="2"
)
shared_vocab_cooc_df = shared_vocab_cooc_df.dropna()
shared_vocab_cooc_df = shared_vocab_cooc_df[
shared_vocab_cooc_df.index.notnull()
]
logs.info("shared npmi df")
logs.info(shared_npmi_df)
logs.info("shared vocab df")
logs.info(shared_vocab_cooc_df)
npmi_bias = (
shared_npmi_df[subgroup1 + "-npmi"] - shared_npmi_df[subgroup2 + "-npmi"]
)
paired_results_dict["npmi-bias"] = npmi_bias.dropna()
paired_results_dict["npmi"] = shared_npmi_df.dropna()
paired_results_dict["pmi"] = shared_pmi_df.dropna()
paired_results_dict["count"] = shared_vocab_cooc_df.dropna()
return paired_results_dict
def calc_metrics(self, subgroup):
# Index of the subgroup word in the sparse vector
subgroup_idx = self.vocab_counts_df.index.get_loc(subgroup)
logs.info("Calculating co-occurrences...")
df_coo = self.calc_cooccurrences(subgroup, subgroup_idx)
vocab_cooc_df = self.set_idx_cols(df_coo, subgroup)
logs.info(vocab_cooc_df)
logs.info("Calculating PMI...")
pmi_df = self.calc_PMI(vocab_cooc_df, subgroup)
logs.info(pmi_df)
logs.info("Calculating nPMI...")
npmi_df = self.calc_nPMI(pmi_df, vocab_cooc_df, subgroup)
logs.info(npmi_df)
return vocab_cooc_df, pmi_df, npmi_df
def set_idx_cols(self, df_coo, subgroup):
"""
:param df_coo: Co-occurrence counts for subgroup, length is num_words
:return:
"""
count_df = df_coo.set_index(self.vocab_counts_df.index)
count_df.columns = [subgroup + "-count"]
count_df[subgroup + "-count"] = count_df[subgroup + "-count"].astype(int)
return count_df
def calc_PMI(self, vocab_cooc_df, subgroup):
"""
# PMI(x;y) = h(y) - h(y|x)
# = h(subgroup) - h(subgroup|word)
# = log (p(subgroup|word) / p(subgroup))
# nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y))
"""
# Calculation of p(subgroup)
subgroup_prob = self.vocab_counts_df.loc[subgroup]["proportion"]
# Calculation of p(subgroup|word) = count(subgroup,word) / count(word)
# Because the inidices match (the vocab words),
# this division doesn't need to specify the index (I think?!)
p_subgroup_g_word = (
vocab_cooc_df[subgroup + "-count"] / self.vocab_counts_df["count"]
)
logs.info("p_subgroup_g_word is")
logs.info(p_subgroup_g_word)
pmi_df = pd.DataFrame()
pmi_df[subgroup + "-pmi"] = np.log(p_subgroup_g_word / subgroup_prob)
# Note: A potentially faster solution for adding count, npmi,
# can be based on this zip idea:
# df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] =
# zip(*df_test['size'].apply(sizes))
return pmi_df.dropna()
def calc_nPMI(self, pmi_df, vocab_cooc_df, subgroup):
"""
# nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y))
# = -log(p(word|subgroup)p(word))
"""
p_word_g_subgroup = vocab_cooc_df[subgroup + "-count"] / sum(
vocab_cooc_df[subgroup + "-count"]
)
p_word = pmi_df.apply(
lambda x: self.vocab_counts_df.loc[x.name]["proportion"], axis=1
)
normalize_pmi = -np.log(p_word_g_subgroup * p_word)
npmi_df = pd.DataFrame()
npmi_df[subgroup + "-npmi"] = pmi_df[subgroup + "-pmi"] / normalize_pmi
return npmi_df.dropna()
|