Spaces:
Build error
Build error
File size: 9,819 Bytes
9b51db9 e1f2cc3 9b51db9 5cdf956 9b51db9 5cdf956 9b51db9 3d4f393 9b51db9 3d4f393 9b51db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from dataclasses import asdict
from os.path import exists
import pandas as pd
from datasets import Dataset, get_dataset_infos, load_dataset, load_from_disk
# treating inf values as NaN as well
pd.set_option("use_inf_as_na", True)
## String names used in Hugging Face dataset configs.
HF_FEATURE_FIELD = "features"
HF_LABEL_FIELD = "label"
HF_DESC_FIELD = "description"
CACHE_DIR = "cache_dir"
## String names we are using within this code.
# These are not coming from the stored dataset nor HF config,
# but rather used as identifiers in our dicts and dataframes.
OUR_TEXT_FIELD = "text"
OUR_LABEL_FIELD = "label"
TOKENIZED_FIELD = "tokenized_text"
EMBEDDING_FIELD = "embedding"
LENGTH_FIELD = "length"
VOCAB = "vocab"
WORD = "word"
CNT = "count"
PROP = "proportion"
TEXT_NAN_CNT = "text_nan_count"
TXT_LEN = "text lengths"
DEDUP_TOT = "dedup_total"
TOT_WORDS = "total words"
TOT_OPEN_WORDS = "total open words"
_DATASET_LIST = [
"c4",
"squad",
"squad_v2",
"hate_speech18",
"hate_speech_offensive",
"glue",
"super_glue",
"wikitext",
"imdb",
"HuggingFaceM4/OBELICS",
]
_STREAMABLE_DATASET_LIST = [
"c4",
"wikitext",
"HuggingFaceM4/OBELICS",
]
_MAX_ROWS = 100
def load_truncated_dataset(
dataset_name,
config_name,
split_name,
num_rows=_MAX_ROWS,
cache_name=None,
use_cache=True,
use_streaming=True,
):
"""
This function loads the first `num_rows` items of a dataset for a
given `config_name` and `split_name`.
If `cache_name` exists, the truncated dataset is loaded from `cache_name`.
Otherwise, a new truncated dataset is created and immediately saved
to `cache_name`.
When the dataset is streamable, we iterate through the first
`num_rows` examples in streaming mode, write them to a jsonl file,
then create a new dataset from the json.
This is the most direct way to make a Dataset from an IterableDataset
as of datasets version 1.6.1.
Otherwise, we download the full dataset and select the first
`num_rows` items
Args:
dataset_name (string):
dataset id in the dataset library
config_name (string):
dataset configuration
split_name (string):
split name
num_rows (int):
number of rows to truncate the dataset to
cache_name (string):
name of the cache directory
use_cache (bool):
whether to load form the cache if it exists
use_streaming (bool):
whether to use streaming when the dataset supports it
Returns:
Dataset: the truncated dataset as a Dataset object
"""
if cache_name is None:
cache_name = f"{dataset_name}_{config_name}_{split_name}_{num_rows}"
if exists(cache_name):
dataset = load_from_disk(cache_name)
else:
if use_streaming and dataset_name in _STREAMABLE_DATASET_LIST:
iterable_dataset = load_dataset(
dataset_name,
name=config_name,
split=split_name,
streaming=True,
).take(num_rows)
rows = list(iterable_dataset)
f = open("temp.jsonl", "w", encoding="utf-8")
for row in rows:
_ = f.write(json.dumps(row) + "\n")
f.close()
dataset = Dataset.from_json(
"temp.jsonl", features=iterable_dataset.features, split=split_name
)
else:
full_dataset = load_dataset(
dataset_name,
name=config_name,
split=split_name,
)
dataset = full_dataset.select(range(num_rows))
dataset.save_to_disk(cache_name)
return dataset
def intersect_dfs(df_dict):
started = 0
new_df = None
for key, df in df_dict.items():
if df is None:
continue
for key2, df2 in df_dict.items():
if df2 is None:
continue
if key == key2:
continue
if started:
new_df = new_df.join(df2, how="inner", lsuffix="1", rsuffix="2")
else:
new_df = df.join(df2, how="inner", lsuffix="1", rsuffix="2")
started = 1
return new_df.copy()
def get_typed_features(features, ftype="string", parents=None):
"""
Recursively get a list of all features of a certain dtype
:param features:
:param ftype:
:param parents:
:return: a list of tuples > e.g. ('A', 'B', 'C') for feature example['A']['B']['C']
"""
if parents is None:
parents = []
typed_features = []
for name, feat in features.items():
if isinstance(feat, dict):
if feat.get("dtype", None) == ftype or feat.get("feature", {}).get(
("dtype", None) == ftype
):
typed_features += [tuple(parents + [name])]
elif "feature" in feat:
if feat["feature"].get("dtype", None) == ftype:
typed_features += [tuple(parents + [name])]
elif isinstance(feat["feature"], dict):
typed_features += get_typed_features(
feat["feature"], ftype, parents + [name]
)
else:
for k, v in feat.items():
if isinstance(v, dict):
typed_features += get_typed_features(
v, ftype, parents + [name, k]
)
elif name == "dtype" and feat == ftype:
typed_features += [tuple(parents)]
return typed_features
def get_label_features(features, parents=None):
"""
Recursively get a list of all features that are ClassLabels
:param features:
:param parents:
:return: pairs of tuples as above and the list of class names
"""
if parents is None:
parents = []
label_features = []
for name, feat in features.items():
if isinstance(feat, dict):
if "names" in feat:
label_features += [(tuple(parents + [name]), feat["names"])]
elif "feature" in feat:
if "names" in feat:
label_features += [
(tuple(parents + [name]), feat["feature"]["names"])
]
elif isinstance(feat["feature"], dict):
label_features += get_label_features(
feat["feature"], parents + [name]
)
else:
for k, v in feat.items():
if isinstance(v, dict):
label_features += get_label_features(v, parents + [name, k])
elif name == "names":
label_features += [(tuple(parents), feat)]
return label_features
# get the info we need for the app sidebar in dict format
def dictionarize_info(dset_info):
info_dict = asdict(dset_info)
res = {
"config_name": info_dict["config_name"],
"splits": {
spl: 100 #spl_info["num_examples"]
for spl, spl_info in info_dict["splits"].items()
},
"features": {
"string": get_typed_features(info_dict["features"], "string"),
"int32": get_typed_features(info_dict["features"], "int32"),
"float32": get_typed_features(info_dict["features"], "float32"),
"label": get_label_features(info_dict["features"]),
},
"description": dset_info.description,
}
return res
def get_dataset_info_dicts(dataset_id=None):
"""
Creates a dict from dataset configs.
Uses the datasets lib's get_dataset_infos
:return: Dictionary mapping dataset names to their configurations
"""
if dataset_id != None:
ds_name_to_conf_dict = {
dataset_id: {
config_name: dictionarize_info(config_info)
for config_name, config_info in get_dataset_infos(dataset_id).items()
}
}
else:
ds_name_to_conf_dict = {
ds_id: {
config_name: dictionarize_info(config_info)
for config_name, config_info in get_dataset_infos(ds_id).items()
}
for ds_id in _DATASET_LIST
}
return ds_name_to_conf_dict
# get all instances of a specific field in a dataset
def extract_field(examples, field_path, new_field_name=None):
if new_field_name is None:
new_field_name = "_".join(field_path)
field_list = []
# TODO: Breaks the CLI if this isn't checked.
if isinstance(field_path, str):
field_path = [field_path]
item_list = examples[field_path[0]]
for field_name in field_path[1:]:
item_list = [
next_item
for item in item_list
for next_item in (
item[field_name]
if isinstance(item[field_name], list)
else [item[field_name]]
)
]
field_list += [
field
for item in item_list
for field in (item if isinstance(item, list) else [item])
]
return {new_field_name: field_list}
|