Spaces:
Build error
Build error
import argparse | |
import json | |
import textwrap | |
from os import mkdir | |
from os.path import join as pjoin, isdir | |
from data_measurements import dataset_statistics | |
from data_measurements import dataset_utils | |
def load_or_prepare_widgets(ds_args, show_embeddings=False, use_cache=False): | |
""" | |
Loader specifically for the widgets used in the app. | |
Does not take specifications from user. | |
Args: | |
ds_args: Dataset configuration settings (config name, split, etc) | |
show_embeddings: Whether to compute embeddings (slow) | |
use_cache: Whether to grab files that have already been computed | |
Returns: | |
Saves files to disk in cache_dir, if user has not specified another dir. | |
""" | |
if not isdir(ds_args["cache_dir"]): | |
print("Creating cache") | |
# We need to preprocess everything. | |
# This should eventually all go into a prepare_dataset CLI | |
mkdir(ds_args["cache_dir"]) | |
dstats = dataset_statistics.DatasetStatisticsCacheClass(**ds_args, | |
use_cache=use_cache) | |
# Embeddings widget | |
dstats.load_or_prepare_dataset() | |
# Header widget | |
dstats.load_or_prepare_dset_peek() | |
# General stats widget | |
dstats.load_or_prepare_general_stats() | |
# Labels widget | |
try: | |
dstats.set_label_field(ds_args['label_field']) | |
dstats.load_or_prepare_labels() | |
except: | |
pass | |
# Text lengths widget | |
dstats.load_or_prepare_text_lengths() | |
if show_embeddings: | |
# Embeddings widget | |
dstats.load_or_prepare_embeddings() | |
# Text duplicates widget | |
dstats.load_or_prepare_text_duplicates() | |
# nPMI widget | |
dstats.load_or_prepare_npmi() | |
npmi_stats = dstats.npmi_stats | |
# Handling for all pairs; in the UI, people select. | |
do_npmi(npmi_stats) | |
# Zipf widget | |
dstats.load_or_prepare_zipf() | |
def load_or_prepare(dataset_args, use_cache=False): | |
""" | |
Users can specify which aspects of the dataset they would like to compute. | |
Args: | |
dataset_args: Dataset configuration settings (config name, split, etc) | |
use_cache: Whether to grab files that have already been computed | |
Returns: | |
Saves files to disk in cache_dir, if user has not specified another dir. | |
""" | |
all = False | |
dstats = dataset_statistics.DatasetStatisticsCacheClass(**dataset_args, use_cache=use_cache) | |
print("Loading dataset.") | |
dstats.load_or_prepare_dataset() | |
print("Dataset loaded. Preparing vocab.") | |
dstats.load_or_prepare_vocab() | |
print("Vocab prepared.") | |
if not dataset_args["calculation"]: | |
all = True | |
if all or dataset_args["calculation"] == "general": | |
print("\n* Calculating general statistics.") | |
dstats.load_or_prepare_general_stats() | |
print("Done!") | |
print("Basic text statistics now available at %s." % dstats.general_stats_json_fid) | |
print( | |
"Text duplicates now available at %s." % dstats.dup_counts_df_fid | |
) | |
if all or dataset_args["calculation"] == "lengths": | |
print("\n* Calculating text lengths.") | |
dstats.load_or_prepare_text_lengths() | |
print("Done!") | |
if all or dataset_args["calculation"] == "labels": | |
if not dstats.label_field: | |
print("Warning: You asked for label calculation, but didn't " | |
"provide the labels field name. Assuming it is 'label'...") | |
dstats.set_label_field("label") | |
else: | |
print("\n* Calculating label distribution.") | |
dstats.load_or_prepare_labels() | |
fig_label_html = pjoin(dstats.cache_path, "labels_fig.html") | |
fig_label_json = pjoin(dstats.cache_path, "labels.json") | |
dstats.fig_labels.write_html(fig_label_html) | |
with open(fig_label_json, "w+") as f: | |
json.dump(dstats.fig_labels.to_json(), f) | |
print("Done!") | |
print("Label distribution now available at %s." % dstats.label_dset_fid) | |
print("Figure saved to %s." % fig_label_html) | |
if all or dataset_args["calculation"] == "npmi": | |
print("\n* Preparing nPMI.") | |
npmi_stats = dataset_statistics.nPMIStatisticsCacheClass( | |
dstats, use_cache=use_cache | |
) | |
do_npmi(npmi_stats) | |
print("Done!") | |
print( | |
"nPMI results now available in %s for all identity terms that " | |
"occur more than 10 times and all words that " | |
"co-occur with both terms." | |
% npmi_stats.pmi_cache_path | |
) | |
if all or dataset_args["calculation"] == "zipf": | |
print("\n* Preparing Zipf.") | |
zipf_fig_fid = pjoin(dstats.cache_path, "zipf_fig.html") | |
zipf_json_fid = pjoin(dstats.cache_path, "zipf_fig.json") | |
dstats.load_or_prepare_zipf() | |
zipf_fig = dstats.zipf_fig | |
with open(zipf_json_fid, "w+") as f: | |
json.dump(zipf_fig.to_json(), f) | |
zipf_fig.write_html(zipf_fig_fid) | |
print("Done!") | |
print("Zipf results now available at %s." % dstats.zipf_fid) | |
print( | |
"Figure saved to %s, with corresponding json at %s." | |
% (zipf_fig_fid, zipf_json_fid) | |
) | |
# Don't do this one until someone specifically asks for it -- takes awhile. | |
if dataset_args["calculation"] == "embeddings": | |
print("\n* Preparing text embeddings.") | |
dstats.load_or_prepare_embeddings() | |
def do_npmi(npmi_stats): | |
available_terms = npmi_stats.load_or_prepare_npmi_terms() | |
completed_pairs = {} | |
print("Iterating through terms for joint npmi.") | |
for term1 in available_terms: | |
for term2 in available_terms: | |
if term1 != term2: | |
sorted_terms = tuple(sorted([term1, term2])) | |
if sorted_terms not in completed_pairs: | |
term1, term2 = sorted_terms | |
print("Computing nPMI statistics for %s and %s" % (term1, term2)) | |
_ = npmi_stats.load_or_prepare_joint_npmi(sorted_terms) | |
completed_pairs[tuple(sorted_terms)] = {} | |
def get_text_label_df( | |
ds_name, | |
config_name, | |
split_name, | |
text_field, | |
label_field, | |
calculation, | |
out_dir, | |
use_cache=True, | |
): | |
if not use_cache: | |
print("Not using any cache; starting afresh") | |
ds_name_to_dict = dataset_utils.get_dataset_info_dicts(ds_name) | |
if label_field: | |
label_field, label_names = ( | |
ds_name_to_dict[ds_name][config_name]["features"][label_field][0] | |
if len(ds_name_to_dict[ds_name][config_name]["features"][label_field]) > 0 | |
else ((), []) | |
) | |
else: | |
label_field = () | |
label_names = [] | |
dataset_args = { | |
"dset_name": ds_name, | |
"dset_config": config_name, | |
"split_name": split_name, | |
"text_field": text_field, | |
"label_field": label_field, | |
"label_names": label_names, | |
"calculation": calculation, | |
"cache_dir": out_dir, | |
} | |
load_or_prepare(dataset_args, use_cache=use_cache) | |
def main(): | |
# TODO: Make this the Hugging Face arg parser | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.RawDescriptionHelpFormatter, | |
description=textwrap.dedent( | |
""" | |
Example for hate speech18 dataset: | |
python3 run_data_measurements.py --dataset="hate_speech18" --config="default" --split="train" --feature="text" | |
Example for IMDB dataset: | |
python3 run_data_measurements.py --dataset="imdb" --config="plain_text" --split="train" --label_field="label" --feature="text" | |
""" | |
), | |
) | |
parser.add_argument( | |
"-d", "--dataset", required=True, help="Name of dataset to prepare" | |
) | |
parser.add_argument( | |
"-c", "--config", required=True, help="Dataset configuration to prepare" | |
) | |
parser.add_argument( | |
"-s", "--split", required=True, type=str, help="Dataset split to prepare" | |
) | |
parser.add_argument( | |
"-f", | |
"--feature", | |
required=True, | |
type=str, | |
default="text", | |
help="Text column to prepare", | |
) | |
parser.add_argument( | |
"-w", | |
"--calculation", | |
help="""What to calculate (defaults to everything except embeddings).\n | |
Options are:\n | |
- `general` (for duplicate counts, missing values, length statistics.)\n | |
- `lengths` for text length distribution\n | |
- `labels` for label distribution\n | |
- `embeddings` (Warning: Slow.)\n | |
- `npmi` for word associations\n | |
- `zipf` for zipfian statistics | |
""", | |
) | |
parser.add_argument( | |
"-l", | |
"--label_field", | |
type=str, | |
required=False, | |
default="", | |
help="Field name for label column in dataset (Required if there is a label field that you want information about)", | |
) | |
parser.add_argument( | |
"--cached", | |
default=False, | |
required=False, | |
action="store_true", | |
help="Whether to use cached files (Optional)", | |
) | |
parser.add_argument( | |
"--do_html", | |
default=False, | |
required=False, | |
action="store_true", | |
help="Whether to write out corresponding HTML files (Optional)", | |
) | |
parser.add_argument("--out_dir", default="cache_dir", help="Where to write out to.") | |
args = parser.parse_args() | |
print("Proceeding with the following arguments:") | |
print(args) | |
# run_data_measurements.py -d hate_speech18 -c default -s train -f text -w npmi | |
get_text_label_df(args.dataset, args.config, args.split, args.feature, | |
args.label_field, args.calculation, args.out_dir, | |
use_cache=args.cached) | |
print() | |
if __name__ == "__main__": | |
main() | |