yourusername commited on
Commit
e88b792
1 Parent(s): 64a1ca0

:rocket: add app

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py CHANGED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+ from os import mkdir
17
+ from os.path import isdir
18
+
19
+ import streamlit as st
20
+
21
+ from data_measurements import dataset_statistics, dataset_utils
22
+ from data_measurements import streamlit_utils as st_utils
23
+
24
+ logs = logging.getLogger(__name__)
25
+ logs.setLevel(logging.WARNING)
26
+ logs.propagate = False
27
+
28
+ if not logs.handlers:
29
+
30
+ # Logging info to log file
31
+ file = logging.FileHandler("./log_files/app.log")
32
+ fileformat = logging.Formatter("%(asctime)s:%(message)s")
33
+ file.setLevel(logging.INFO)
34
+ file.setFormatter(fileformat)
35
+
36
+ # Logging debug messages to stream
37
+ stream = logging.StreamHandler()
38
+ streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
39
+ stream.setLevel(logging.WARNING)
40
+ stream.setFormatter(streamformat)
41
+
42
+ logs.addHandler(file)
43
+ logs.addHandler(stream)
44
+
45
+ st.set_page_config(
46
+ page_title="Demo to showcase dataset metrics",
47
+ page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
48
+ layout="wide",
49
+ initial_sidebar_state="auto",
50
+ )
51
+
52
+ # colorblind-friendly colors
53
+ colors = [
54
+ "#332288",
55
+ "#117733",
56
+ "#882255",
57
+ "#AA4499",
58
+ "#CC6677",
59
+ "#44AA99",
60
+ "#DDCC77",
61
+ "#88CCEE",
62
+ ]
63
+
64
+ CACHE_DIR = dataset_utils.CACHE_DIR
65
+ # String names we are using (not coming from the stored dataset).
66
+ OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD
67
+ OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD
68
+ TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD
69
+ EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD
70
+ LENGTH_FIELD = dataset_utils.LENGTH_FIELD
71
+ # TODO: Allow users to specify this.
72
+ _MIN_VOCAB_COUNT = 10
73
+ _SHOW_TOP_N_WORDS = 10
74
+
75
+
76
+ @st.cache(
77
+ hash_funcs={
78
+ dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path
79
+ },
80
+ allow_output_mutation=True,
81
+ )
82
+ def load_or_prepare(ds_args, show_embeddings, use_cache=False):
83
+ """
84
+ Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if
85
+ a cache for those arguments is available, to load it from the cache.
86
+ Args:
87
+ ds_args (dict): the dataset arguments defined via the streamlit app GUI
88
+ show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
89
+ use_cache (Bool) : whether the cache is used by default or not
90
+ Returns:
91
+ dstats: the computed dataset statistics (from the dataset_statistics class)
92
+ """
93
+ if not isdir(CACHE_DIR):
94
+ logs.warning("Creating cache")
95
+ # We need to preprocess everything.
96
+ # This should eventually all go into a prepare_dataset CLI
97
+ mkdir(CACHE_DIR)
98
+ if use_cache:
99
+ logs.warning("Using cache")
100
+ dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args)
101
+ logs.warning("Loading Dataset")
102
+ dstats.load_or_prepare_dataset(use_cache=use_cache)
103
+ logs.warning("Extracting Labels")
104
+ dstats.load_or_prepare_labels(use_cache=use_cache)
105
+ logs.warning("Computing Text Lengths")
106
+ dstats.load_or_prepare_text_lengths(use_cache=use_cache)
107
+ logs.warning("Extracting Vocabulary")
108
+ dstats.load_or_prepare_vocab(use_cache=use_cache)
109
+ logs.warning("Calculating General Statistics...")
110
+ dstats.load_or_prepare_general_stats(use_cache=use_cache)
111
+ logs.warning("Completed Calculation.")
112
+ logs.warning("Calculating Fine-Grained Statistics...")
113
+ if show_embeddings:
114
+ logs.warning("Loading Embeddings")
115
+ dstats.load_or_prepare_embeddings(use_cache=use_cache)
116
+ print(dstats.fig_tree)
117
+ # TODO: This has now been moved to calculation when the npmi widget is loaded.
118
+ logs.warning("Loading Terms for nPMI")
119
+ dstats.load_or_prepare_npmi_terms(use_cache=use_cache)
120
+ logs.warning("Loading Zipf")
121
+ dstats.load_or_prepare_zipf(use_cache=use_cache)
122
+ return dstats
123
+
124
+
125
+ def show_column(dstats, ds_name_to_dict, show_embeddings, column_id, use_cache=True):
126
+ """
127
+ Function for displaying the elements in the right column of the streamlit app.
128
+ Args:
129
+ ds_name_to_dict (dict): the dataset name and options in dictionary form
130
+ show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
131
+ column_id (str): what column of the dataset the analysis is done on
132
+ use_cache (Bool): whether the cache is used by default or not
133
+ Returns:
134
+ The function displays the information using the functions defined in the st_utils class.
135
+ """
136
+ # Note that at this point we assume we can use cache; default value is True.
137
+ # start showing stuff
138
+ title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {'-'.join(dstats.text_field)}"
139
+ st.markdown(title_str)
140
+ logs.info("showing header")
141
+ st_utils.expander_header(dstats, ds_name_to_dict, column_id)
142
+ logs.info("showing general stats")
143
+ st_utils.expander_general_stats(dstats, _SHOW_TOP_N_WORDS, column_id)
144
+ st_utils.expander_label_distribution(dstats.label_df, dstats.fig_labels, column_id)
145
+ st_utils.expander_text_lengths(
146
+ dstats.tokenized_df,
147
+ dstats.fig_tok_length,
148
+ dstats.avg_length,
149
+ dstats.std_length,
150
+ OUR_TEXT_FIELD,
151
+ LENGTH_FIELD,
152
+ column_id,
153
+ )
154
+ st_utils.expander_text_duplicates(dstats.text_dup_counts_df, column_id)
155
+
156
+ # We do the loading of these after the others in order to have some time
157
+ # to compute while the user works with the details above.
158
+ # Uses an interaction; handled a bit differently than other widgets.
159
+ logs.info("showing npmi widget")
160
+ npmi_stats = dataset_statistics.nPMIStatisticsCacheClass(
161
+ dstats, use_cache=use_cache
162
+ )
163
+ available_terms = npmi_stats.get_available_terms(use_cache=use_cache)
164
+ st_utils.npmi_widget(
165
+ column_id, available_terms, npmi_stats, _MIN_VOCAB_COUNT, use_cache=use_cache
166
+ )
167
+ logs.info("showing zipf")
168
+ st_utils.expander_zipf(dstats.z, dstats.zipf_fig, column_id)
169
+ if show_embeddings:
170
+ st_utils.expander_text_embeddings(
171
+ dstats.text_dset,
172
+ dstats.fig_tree,
173
+ dstats.node_list,
174
+ dstats.embeddings,
175
+ OUR_TEXT_FIELD,
176
+ column_id,
177
+ )
178
+
179
+
180
+ def main():
181
+ """ Sidebar description and selection """
182
+ ds_name_to_dict = dataset_utils.get_dataset_info_dicts()
183
+ st.title("Data Measurements Tool")
184
+ # Get the sidebar details
185
+ st_utils.sidebar_header()
186
+ # Set up naming, configs, and cache path.
187
+ compare_mode = st.sidebar.checkbox("Comparison mode")
188
+
189
+ # When not doing new development, use the cache.
190
+ use_cache = True
191
+ # TODO: Better handling of this eg, st.sidebar.checkbox("Show clustering")=
192
+ show_embeddings = st.sidebar.checkbox("Show embeddings")
193
+ # List of datasets for which embeddings are hard to compute:
194
+
195
+ if compare_mode:
196
+ logs.warning("Using Comparison Mode")
197
+ dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A")
198
+ dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B")
199
+ left_col, _, right_col = st.columns([10, 1, 10])
200
+ dstats_left = load_or_prepare(
201
+ dataset_args_left, show_embeddings, use_cache=use_cache
202
+ )
203
+ with left_col:
204
+ show_column(dstats_left, ds_name_to_dict, show_embeddings, " A")
205
+ dstats_right = load_or_prepare(
206
+ dataset_args_right, show_embeddings, use_cache=use_cache
207
+ )
208
+ with right_col:
209
+ show_column(dstats_right, ds_name_to_dict, show_embeddings, " B")
210
+ else:
211
+ logs.warning("Using Single Dataset Mode")
212
+ dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "")
213
+ dstats = load_or_prepare(dataset_args, show_embeddings, use_cache=use_cache)
214
+ show_column(dstats, ds_name_to_dict, show_embeddings, "")
215
+
216
+
217
+ if __name__ == "__main__":
218
+ main()