File size: 3,792 Bytes
3932541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import requests
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load

cer_langs = ["ja", "zh-CN", "zh-HK", "zh-TW"]


def make_clickable(model_name):
    link = "https://huggingface.co/" + model_name
    return f'<a target="_blank" href="{link}">{model_name}</a>'


def get_model_ids():
    api = HfApi()
    models = api.list_models(filter="robust-speech-event")
    model_ids = [x.modelId for x in models]
    return model_ids


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md")
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


def parse_metric_value(value):
    if isinstance(value, str):
        "".join(value.split("%"))
        try:
            value = float(value)
        except:  # noqa: E722
            value = None
    elif isinstance(value, float) and value < 1.0:
        # assuming that WER is given in 0.xx format
        value = 100 * value
    elif isinstance(value, list):
        if len(value) > 0:
            value = value[0]
        else:
            value = None
    value = round(value, 2) if value is not None else None
    return value


def parse_metrics_row(meta):
    if "model-index" not in meta or "language" not in meta:
        return None
    lang = meta["language"]
    lang = lang[0] if isinstance(lang, list) else lang
    for result in meta["model-index"][0]["results"]:
        if "dataset" not in result or "metrics" not in result:
            continue
        dataset = result["dataset"]["type"]
        if "args" not in result["dataset"]:
            continue
        dataset_config = result["dataset"]["args"]
        row = {"dataset": dataset, "lang": lang}
        for metric in result["metrics"]:
            type = metric["type"].lower().strip()
            if type not in ["wer", "cer"]:
                continue
            value = parse_metric_value(metric["value"])
            if value is None:
                continue
            if type not in row or value < row[type]:
                # overwrite the metric if the new value is lower (e.g. with LM)
                row[type] = value
        if "wer" in row or "cer" in row:
            return row
        return None


@st.cache(ttl=600)
def get_data():
    data = []
    model_ids = get_model_ids()
    for model_id in tqdm(model_ids):
        meta = get_metadata(model_id)
        if meta is None:
            continue
        row = parse_metrics_row(meta)
        if row is None:
            continue
        row["model_id"] = model_id
        data.append(row)
    return pd.DataFrame.from_records(data)


dataframe = get_data()
dataframe = dataframe.fillna("")
dataframe["model_id"] = dataframe["model_id"].apply(make_clickable)

_, col_center = st.columns([3, 6])
with col_center:
    st.image("logo.png", width=200)
st.markdown("# Speech Models Leaderboard")

lang = st.selectbox(
    "Language",
    sorted(dataframe["lang"].unique()),
    index=0,
)
lang_df = dataframe[dataframe.lang == lang]

dataset = st.selectbox(
    "Dataset",
    sorted(lang_df["dataset"].unique()),
    index=0,
)
dataset_df = lang_df[lang_df.dataset == dataset]
if lang in cer_langs:
    dataset_df = dataset_df[["model_id", "cer"]]
    dataset_df.sort_values("cer", inplace=True)
else:
    dataset_df = dataset_df[["model_id", "wer"]]
    dataset_df.sort_values("wer", inplace=True)
dataset_df.rename(
    columns={
        "model_id": "Model",
        "wer": "WER (lower is better)",
        "cer": "CER (lower is better)",
    },
    inplace=True,
)

st.write(dataset_df.to_html(escape=False, index=None), unsafe_allow_html=True)