Spaces:
Running
Running
speech-test
commited on
Commit
β’
743f616
1
Parent(s):
dcde789
apply suggestions
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ suggested_datasets = [
|
|
13 |
"librispeech_asr",
|
14 |
"mozilla-foundation/common_voice_8_0",
|
15 |
"mozilla-foundation/common_voice_7_0",
|
16 |
-
"common_voice",
|
17 |
"speech-recognition-community-v2/eval_data",
|
18 |
]
|
19 |
|
@@ -101,38 +100,32 @@ def get_data():
|
|
101 |
return pd.DataFrame.from_records(data)
|
102 |
|
103 |
|
104 |
-
def
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
|
117 |
@st.cache(ttl=600)
|
118 |
-
def
|
119 |
-
lang_name = lang2name[lang] if lang in lang2name else ""
|
120 |
-
num_models = len(lang_df["model_id"].unique())
|
121 |
-
unique_datasets = sorted(lang_df["dataset"].unique())
|
122 |
-
num_datasets = len(unique_datasets)
|
123 |
msg = f"""
|
124 |
-
For the `{lang}` ({lang_name}) language, there are currently `{num_models}` models
|
125 |
-
trained on `{num_datasets}` datasets available for `automatic-speech-recognition`.
|
126 |
-
|
127 |
The models have been trained and/or evaluated on the following datasets:
|
128 |
"""
|
129 |
-
for dataset_id in
|
130 |
-
|
|
|
|
|
|
|
131 |
msg += """
|
132 |
Choose the dataset that is most relevant to your task and select it from the dropdown below.
|
133 |
"""
|
134 |
-
msg += suggest_datasets(unique_datasets)
|
135 |
-
msg += "Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it."
|
136 |
|
137 |
msg = "\n".join([line.strip() for line in msg.split("\n")])
|
138 |
return msg
|
@@ -140,7 +133,6 @@ def generate_note(lang, lang_df):
|
|
140 |
|
141 |
dataframe = get_data()
|
142 |
dataframe = dataframe.fillna("")
|
143 |
-
dataframe["model_id"] = dataframe["model_id"].apply(make_clickable)
|
144 |
|
145 |
_, col_center = st.columns([3, 6])
|
146 |
with col_center:
|
@@ -148,26 +140,40 @@ with col_center:
|
|
148 |
st.markdown("# Speech Recognition Models Leaderboard")
|
149 |
|
150 |
st.markdown(
|
151 |
-
"This is a leaderboard over all speech recognition models and datasets
|
152 |
-
"Please select a language you want to find a model for from the dropdown
|
153 |
)
|
154 |
|
155 |
-
lang = st.selectbox(
|
156 |
"Language",
|
157 |
sorted(dataframe["lang"].unique()),
|
|
|
158 |
index=0,
|
159 |
)
|
160 |
lang_df = dataframe[dataframe.lang == lang]
|
161 |
|
162 |
-
|
163 |
-
st.markdown(msg)
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
"Dataset",
|
167 |
-
|
168 |
index=0,
|
169 |
)
|
170 |
dataset_df = lang_df[lang_df.dataset == dataset]
|
|
|
|
|
171 |
if lang in cer_langs:
|
172 |
dataset_df = dataset_df[["model_id", "cer"]]
|
173 |
dataset_df.sort_values("cer", inplace=True)
|
@@ -183,7 +189,20 @@ dataset_df.rename(
|
|
183 |
inplace=True,
|
184 |
)
|
185 |
|
186 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
if lang in cer_langs:
|
189 |
st.markdown(
|
|
|
13 |
"librispeech_asr",
|
14 |
"mozilla-foundation/common_voice_8_0",
|
15 |
"mozilla-foundation/common_voice_7_0",
|
|
|
16 |
"speech-recognition-community-v2/eval_data",
|
17 |
]
|
18 |
|
|
|
100 |
return pd.DataFrame.from_records(data)
|
101 |
|
102 |
|
103 |
+
def sort_datasets(datasets):
|
104 |
+
# 1. sort by name
|
105 |
+
datasets = sorted(datasets)
|
106 |
+
# 2. bring the suggested datasets to the top and append the rest
|
107 |
+
datasets = sorted(
|
108 |
+
datasets,
|
109 |
+
key=lambda dataset_id: suggested_datasets.index(dataset_id)
|
110 |
+
if dataset_id in suggested_datasets
|
111 |
+
else len(suggested_datasets),
|
112 |
+
)
|
113 |
+
return datasets
|
114 |
|
115 |
|
116 |
@st.cache(ttl=600)
|
117 |
+
def generate_dataset_info(datasets):
|
|
|
|
|
|
|
|
|
118 |
msg = f"""
|
|
|
|
|
|
|
119 |
The models have been trained and/or evaluated on the following datasets:
|
120 |
"""
|
121 |
+
for dataset_id in datasets:
|
122 |
+
if dataset_id in suggested_datasets:
|
123 |
+
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id}) *(recommended)*\n"
|
124 |
+
else:
|
125 |
+
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id})\n"
|
126 |
msg += """
|
127 |
Choose the dataset that is most relevant to your task and select it from the dropdown below.
|
128 |
"""
|
|
|
|
|
129 |
|
130 |
msg = "\n".join([line.strip() for line in msg.split("\n")])
|
131 |
return msg
|
|
|
133 |
|
134 |
dataframe = get_data()
|
135 |
dataframe = dataframe.fillna("")
|
|
|
136 |
|
137 |
_, col_center = st.columns([3, 6])
|
138 |
with col_center:
|
|
|
140 |
st.markdown("# Speech Recognition Models Leaderboard")
|
141 |
|
142 |
st.markdown(
|
143 |
+
"This is a leaderboard over all speech recognition models and datasets.\n\n"
|
144 |
+
"β¬
Please select a language you want to find a model for from the dropdown on the left."
|
145 |
)
|
146 |
|
147 |
+
lang = st.sidebar.selectbox(
|
148 |
"Language",
|
149 |
sorted(dataframe["lang"].unique()),
|
150 |
+
format_func=lambda key: lang2name.get(key, key),
|
151 |
index=0,
|
152 |
)
|
153 |
lang_df = dataframe[dataframe.lang == lang]
|
154 |
|
155 |
+
sorted_datasets = sort_datasets(lang_df["dataset"].unique())
|
|
|
156 |
|
157 |
+
text = generate_dataset_info(sorted_datasets)
|
158 |
+
st.sidebar.markdown(text)
|
159 |
+
|
160 |
+
lang_name = lang2name[lang] if lang in lang2name else ""
|
161 |
+
num_models = len(lang_df["model_id"].unique())
|
162 |
+
num_datasets = len(lang_df["dataset"].unique())
|
163 |
+
text = f"""
|
164 |
+
For the `{lang}` ({lang_name}) language, there are currently `{num_models}` model(s)
|
165 |
+
trained on `{num_datasets}` dataset(s) available for `automatic-speech-recognition`.
|
166 |
+
"""
|
167 |
+
st.markdown(text)
|
168 |
+
|
169 |
+
dataset = st.sidebar.selectbox(
|
170 |
"Dataset",
|
171 |
+
sorted_datasets,
|
172 |
index=0,
|
173 |
)
|
174 |
dataset_df = lang_df[lang_df.dataset == dataset]
|
175 |
+
|
176 |
+
# sort by WER or CER depending on the language
|
177 |
if lang in cer_langs:
|
178 |
dataset_df = dataset_df[["model_id", "cer"]]
|
179 |
dataset_df.sort_values("cer", inplace=True)
|
|
|
189 |
inplace=True,
|
190 |
)
|
191 |
|
192 |
+
st.markdown(
|
193 |
+
"Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it."
|
194 |
+
)
|
195 |
+
|
196 |
+
# display the model ranks
|
197 |
+
dataset_df = dataset_df.reset_index(drop=True)
|
198 |
+
dataset_df.index += 1
|
199 |
+
|
200 |
+
# turn the model ids into clickable links
|
201 |
+
dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable)
|
202 |
+
|
203 |
+
table_html = dataset_df.to_html(escape=False)
|
204 |
+
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
205 |
+
st.write(table_html, unsafe_allow_html=True)
|
206 |
|
207 |
if lang in cer_langs:
|
208 |
st.markdown(
|