Spaces:
Configuration error
Configuration error
File size: 10,127 Bytes
460dbe4 8d1bd17 460dbe4 8d1bd17 460dbe4 8d1bd17 460dbe4 8d1bd17 460dbe4 8d1bd17 9a4915e 8d1bd17 9a4915e 460dbe4 207dfca 8d1bd17 9a4915e 460dbe4 595a64b 460dbe4 207dfca 9a4915e 8d1bd17 9a4915e 8d1bd17 9a4915e 207dfca 9a4915e 8d1bd17 9a4915e 207dfca 8d1bd17 9a4915e 207dfca 9a4915e 8d1bd17 460dbe4 029669d 460dbe4 8d1bd17 460dbe4 8d1bd17 207dfca 8d1bd17 207dfca 8d1bd17 460dbe4 8d1bd17 460dbe4 344dcb5 8d1bd17 344dcb5 1dada23 207dfca 460dbe4 dba1334 460dbe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
# using Gradio Blocks.
import json
import os
import threading
import uuid
from pathlib import Path
from urllib.parse import parse_qs
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import Repository
from langchain import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from langchain.prompts import load_prompt
from utils import force_git_push
# These variables are for storing the mturk HITs in a Hugging Face dataset.
if Path(".env").is_file():
load_dotenv(".env")
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
FORCE_PUSH = os.getenv("FORCE_PUSH")
HF_TOKEN = os.getenv("HF_TOKEN")
PROMPT_TEMPLATES = Path("prompt_templates")
# Set env variable for langchain to communicate with Hugging Face Hub
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
DATA_FILENAME = "data.jsonl"
DATA_FILE = os.path.join("data", DATA_FILENAME)
repo = Repository(
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
TOTAL_CNT = 3 # How many user inputs per HIT
# This function pushes the HIT data written in data.jsonl to our Hugging Face
# dataset every minute. Adjust the frequency to suit your needs.
PUSH_FREQUENCY = 60
def asynchronous_push(f_stop):
if repo.is_repo_clean():
print("Repo currently clean. Ignoring push_to_hub")
else:
repo.git_add(auto_lfs_track=True)
repo.git_commit("Auto commit by space")
if FORCE_PUSH == "yes":
force_git_push(repo)
else:
repo.git_push()
if not f_stop.is_set():
# call again in 60 seconds
threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()
f_stop = threading.Event()
asynchronous_push(f_stop)
# Now let's run the app!
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")
chatbot_1 = ConversationChain(
llm=HuggingFaceHub(
repo_id="google/flan-t5-xl",
model_kwargs={"temperature": 1}
),
prompt=prompt,
verbose=False,
memory=ConversationBufferMemory(ai_prefix="Assistant"),
)
chatbot_2 = ConversationChain(
llm=HuggingFaceHub(
repo_id="bigscience/bloom",
model_kwargs={"temperature": 0.7}
),
prompt=prompt,
verbose=False,
memory=ConversationBufferMemory(ai_prefix="Assistant"),
)
chatbot_3 = ConversationChain(
llm=HuggingFaceHub(
repo_id="bigscience/T0_3B",
model_kwargs={"temperature": 1}
),
prompt=prompt,
verbose=False,
memory=ConversationBufferMemory(ai_prefix="Assistant"),
)
chatbot_4 = ConversationChain(
llm=HuggingFaceHub(
repo_id="EleutherAI/gpt-j-6B",
model_kwargs={"temperature": 1}
),
prompt=prompt,
verbose=False,
memory=ConversationBufferMemory(ai_prefix="Assistant"),
)
demo = gr.Blocks()
with demo:
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
# We keep track of state as a JSON
state_dict = {
"conversation_id": str(uuid.uuid4()),
"assignmentId": "",
"cnt": 0, "data": [],
"past_user_inputs": [],
"generated_responses": [],
"response_1": "",
"response_2": "",
"response_3": "",
"response_4": "",
}
state = gr.JSON(state_dict, visible=False)
gr.Markdown("# RLHF Interface")
gr.Markdown("Choose the best model output")
state_display = gr.Markdown(f"Your messages: 0/{TOTAL_CNT}")
# Generate model prediction
def _predict(txt, state):
# TODO: parallelize this!
response_1 = chatbot_1.predict(input=txt)
response_2 = chatbot_2.predict(input=txt)
response_3 = chatbot_3.predict(input=txt)
response_4 = chatbot_4.predict(input=txt)
response2model = {}
response2model[response_1] = chatbot_1.llm.repo_id
response2model[response_2] = chatbot_2.llm.repo_id
response2model[response_3] = chatbot_3.llm.repo_id
response2model[response_4] = chatbot_4.llm.repo_id
state["cnt"] += 1
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2, "response_3": response_3, "response_4": response_4,"response2model": response2model})
state["past_user_inputs"].append(txt)
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2, response_3, response_4], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy
def _select_response(selected_response, state, dummy):
done = state["cnt"] == TOTAL_CNT
state["generated_responses"].append(selected_response)
state["data"][-1]["selected_response"] = selected_response
state["data"][-1]["selected_model"] = state["data"][-1]["response2model"][selected_response]
if state["cnt"] == TOTAL_CNT:
# Write the HIT data to our local dataset because the worker has
# submitted everything now.
with open(DATA_FILE, "a") as jsonlfile:
json_data_with_assignment_id =\
[json.dumps(dict({"assignmentId": state["assignmentId"], "conversation_id": state["conversation_id"]}, **datum)) for datum in state["data"]]
jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n")
toggle_example_submit = gr.update(visible=not done)
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"])])
query = parse_qs(dummy[1:])
if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE":
# It seems that someone is using this app on mturk. We need to
# store the assignmentId in the state before submit_hit_button
# is clicked. We can do this here in _predict. We need to save the
# assignmentId so that the turker can get credit for their HIT.
state["assignmentId"] = query["assignmentId"][0]
toggle_final_submit = gr.update(visible=done)
toggle_final_submit_preview = gr.update(visible=False)
else:
toggle_final_submit_preview = gr.update(visible=done)
toggle_final_submit = gr.update(visible=False)
text_input = gr.update(visible=False) if done else gr.update(visible=True)
return gr.update(visible=False), gr.update(visible=True), text_input, gr.update(visible=False), state, gr.update(value=past_conversation_string), toggle_example_submit, toggle_final_submit, toggle_final_submit_preview,
# Input fields
past_conversation = gr.Markdown()
text_input = gr.Textbox(placeholder="Enter a statement", show_label=False)
select_response = gr.Radio(choices=[None, None], visible=False, label="Choose the best response")
select_response_button = gr.Button("Select Response", visible=False)
with gr.Column() as example_submit:
submit_ex_button = gr.Button("Submit")
with gr.Column(visible=False) as final_submit:
submit_hit_button = gr.Button("Submit HIT")
with gr.Column(visible=False) as final_submit_preview:
submit_hit_button_preview = gr.Button("Submit Work (preview mode; no mturk HIT credit, but your examples will still be stored)")
# Button event handlers
get_window_location_search_js = """
function(text_input, label_input, state, dummy) {
return [text_input, label_input, state, window.location.search];
}
"""
select_response_button.click(
_select_response,
inputs=[select_response, state, dummy],
outputs=[select_response, example_submit, text_input, select_response_button, state, past_conversation, example_submit, final_submit, final_submit_preview],
_js=get_window_location_search_js,
)
submit_ex_button.click(
_predict,
inputs=[text_input, state],
outputs=[text_input, select_response_button, select_response, past_conversation, state, example_submit, final_submit, final_submit_preview, state_display, dummy],
_js=get_window_location_search_js,
)
post_hit_js = """
function(state) {
// If there is an assignmentId, then the submitter is on mturk
// and has accepted the HIT. So, we need to submit their HIT.
const form = document.createElement('form');
form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
form.method = 'post';
for (const key in state) {
const hiddenField = document.createElement('input');
hiddenField.type = 'hidden';
hiddenField.name = key;
hiddenField.value = state[key];
form.appendChild(hiddenField);
};
document.body.appendChild(form);
form.submit();
return state;
}
"""
submit_hit_button.click(
lambda state: state,
inputs=[state],
outputs=[state],
_js=post_hit_js,
)
refresh_app_js = """
function(state) {
// The following line here loads the app again so the user can
// enter in another preview-mode "HIT".
window.location.href = window.location.href;
return state;
}
"""
submit_hit_button_preview.click(
lambda state: state,
inputs=[state],
outputs=[state],
_js=refresh_app_js,
)
demo.launch() |