File size: 10,127 Bytes
460dbe4
 
8d1bd17
460dbe4
8d1bd17
460dbe4
8d1bd17
460dbe4
8d1bd17
460dbe4
 
8d1bd17
 
9a4915e
8d1bd17
 
 
 
9a4915e
460dbe4
 
 
 
 
 
207dfca
8d1bd17
9a4915e
 
460dbe4
 
 
 
 
 
595a64b
460dbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207dfca
9a4915e
8d1bd17
9a4915e
 
8d1bd17
9a4915e
 
 
207dfca
9a4915e
 
8d1bd17
9a4915e
207dfca
8d1bd17
9a4915e
 
 
207dfca
9a4915e
 
8d1bd17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460dbe4
 
 
 
 
 
 
 
029669d
460dbe4
 
 
 
 
 
8d1bd17
 
460dbe4
 
 
 
 
 
 
 
 
 
8d1bd17
207dfca
 
8d1bd17
 
 
 
207dfca
 
8d1bd17
 
460dbe4
 
 
 
 
8d1bd17
460dbe4
 
344dcb5
8d1bd17
344dcb5
 
 
1dada23
 
207dfca
460dbe4
 
 
 
 
dba1334
460dbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Basic example for doing model-in-the-loop dynamic adversarial data collection
# using Gradio Blocks.
import json
import os
import threading
import uuid
from pathlib import Path
from urllib.parse import parse_qs

import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import Repository
from langchain import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from langchain.prompts import load_prompt

from utils import force_git_push

# These variables are for storing the mturk HITs in a Hugging Face dataset.
if Path(".env").is_file():
    load_dotenv(".env")
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
FORCE_PUSH = os.getenv("FORCE_PUSH")
HF_TOKEN = os.getenv("HF_TOKEN")
PROMPT_TEMPLATES = Path("prompt_templates")
# Set env variable for langchain to communicate with Hugging Face Hub
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN

DATA_FILENAME = "data.jsonl"
DATA_FILE = os.path.join("data", DATA_FILENAME)
repo = Repository(
    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

TOTAL_CNT = 3 # How many user inputs per HIT

# This function pushes the HIT data written in data.jsonl to our Hugging Face
# dataset every minute. Adjust the frequency to suit your needs.
PUSH_FREQUENCY = 60
def asynchronous_push(f_stop):
    if repo.is_repo_clean():
        print("Repo currently clean. Ignoring push_to_hub")
    else:
        repo.git_add(auto_lfs_track=True)
        repo.git_commit("Auto commit by space")
        if FORCE_PUSH == "yes":
            force_git_push(repo)
        else:
            repo.git_push()
    if not f_stop.is_set():
        # call again in 60 seconds
        threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()

f_stop = threading.Event()
asynchronous_push(f_stop)

# Now let's run the app!
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")

chatbot_1 = ConversationChain(
    llm=HuggingFaceHub(
        repo_id="google/flan-t5-xl",
        model_kwargs={"temperature": 1}
    ),
    prompt=prompt,
    verbose=False,
    memory=ConversationBufferMemory(ai_prefix="Assistant"),
)

chatbot_2 = ConversationChain(
    llm=HuggingFaceHub(
        repo_id="bigscience/bloom",
        model_kwargs={"temperature": 0.7}
    ),
    prompt=prompt,
    verbose=False,
    memory=ConversationBufferMemory(ai_prefix="Assistant"),
)

chatbot_3 = ConversationChain(
    llm=HuggingFaceHub(
        repo_id="bigscience/T0_3B",
        model_kwargs={"temperature": 1}
    ),
    prompt=prompt,
    verbose=False,
    memory=ConversationBufferMemory(ai_prefix="Assistant"),
)

chatbot_4 = ConversationChain(
    llm=HuggingFaceHub(
        repo_id="EleutherAI/gpt-j-6B",
        model_kwargs={"temperature": 1}
    ),
    prompt=prompt,
    verbose=False,
    memory=ConversationBufferMemory(ai_prefix="Assistant"),
)

demo = gr.Blocks()

with demo:
    dummy = gr.Textbox(visible=False)  # dummy for passing assignmentId

    # We keep track of state as a JSON
    state_dict = {
        "conversation_id": str(uuid.uuid4()),
        "assignmentId": "",
        "cnt": 0, "data": [],
        "past_user_inputs": [],
        "generated_responses": [],
        "response_1": "",
        "response_2": "",
        "response_3": "",
        "response_4": "",
        }
    state = gr.JSON(state_dict, visible=False)

    gr.Markdown("# RLHF Interface")
    gr.Markdown("Choose the best model output")

    state_display = gr.Markdown(f"Your messages: 0/{TOTAL_CNT}")

    # Generate model prediction
    def _predict(txt, state):
        # TODO: parallelize this!
        response_1 = chatbot_1.predict(input=txt)
        response_2 = chatbot_2.predict(input=txt)
        response_3 = chatbot_3.predict(input=txt)
        response_4 = chatbot_4.predict(input=txt)

        response2model = {}
        response2model[response_1] = chatbot_1.llm.repo_id
        response2model[response_2] = chatbot_2.llm.repo_id
        response2model[response_3] = chatbot_3.llm.repo_id
        response2model[response_4] = chatbot_4.llm.repo_id

        state["cnt"] += 1

        new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"

        state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1,  "response_2": response_2, "response_3": response_3, "response_4": response_4,"response2model": response2model})
        state["past_user_inputs"].append(txt)

        past_conversation_string = "<br />".join(["<br />".join(["πŸ˜ƒ: " + user_input, "πŸ€–: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2, response_3, response_4], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy

    def _select_response(selected_response, state, dummy):
        done = state["cnt"] == TOTAL_CNT
        state["generated_responses"].append(selected_response)
        state["data"][-1]["selected_response"] = selected_response
        state["data"][-1]["selected_model"] = state["data"][-1]["response2model"][selected_response]
        if state["cnt"] == TOTAL_CNT:
            # Write the HIT data to our local dataset because the worker has
            # submitted everything now.
            with open(DATA_FILE, "a") as jsonlfile:
                json_data_with_assignment_id =\
                    [json.dumps(dict({"assignmentId": state["assignmentId"], "conversation_id": state["conversation_id"]}, **datum)) for datum in state["data"]]
                jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n")
        toggle_example_submit = gr.update(visible=not done)
        past_conversation_string = "<br />".join(["<br />".join(["πŸ˜ƒ: " + user_input, "πŸ€–: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"])])
        query = parse_qs(dummy[1:])
        if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE":
            # It seems that someone is using this app on mturk. We need to
            # store the assignmentId in the state before submit_hit_button
            # is clicked. We can do this here in _predict. We need to save the
            # assignmentId so that the turker can get credit for their HIT.
            state["assignmentId"] = query["assignmentId"][0]
            toggle_final_submit = gr.update(visible=done)
            toggle_final_submit_preview = gr.update(visible=False)
        else:
            toggle_final_submit_preview = gr.update(visible=done)
            toggle_final_submit = gr.update(visible=False)
        text_input = gr.update(visible=False) if done else gr.update(visible=True)
        return gr.update(visible=False), gr.update(visible=True), text_input, gr.update(visible=False), state, gr.update(value=past_conversation_string), toggle_example_submit, toggle_final_submit, toggle_final_submit_preview,

    # Input fields
    past_conversation = gr.Markdown()
    text_input = gr.Textbox(placeholder="Enter a statement", show_label=False)
    select_response = gr.Radio(choices=[None, None], visible=False, label="Choose the best response")
    select_response_button = gr.Button("Select Response", visible=False)
    with gr.Column() as example_submit:
        submit_ex_button = gr.Button("Submit")
    with gr.Column(visible=False) as final_submit:
        submit_hit_button = gr.Button("Submit HIT")
    with gr.Column(visible=False) as final_submit_preview:
        submit_hit_button_preview = gr.Button("Submit Work (preview mode; no mturk HIT credit, but your examples will still be stored)")

    # Button event handlers
    get_window_location_search_js = """
        function(text_input, label_input, state, dummy) {
            return [text_input, label_input, state, window.location.search];
        }
        """

    select_response_button.click(
        _select_response,
        inputs=[select_response, state, dummy],
        outputs=[select_response, example_submit, text_input, select_response_button, state, past_conversation, example_submit, final_submit, final_submit_preview],
        _js=get_window_location_search_js,
    )

    submit_ex_button.click(
        _predict,
        inputs=[text_input, state],
        outputs=[text_input, select_response_button, select_response, past_conversation, state, example_submit, final_submit, final_submit_preview, state_display, dummy],
        _js=get_window_location_search_js,
    )

    post_hit_js = """
        function(state) {
            // If there is an assignmentId, then the submitter is on mturk
            // and has accepted the HIT. So, we need to submit their HIT.
            const form = document.createElement('form');
            form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
            form.method = 'post';
            for (const key in state) {
                const hiddenField = document.createElement('input');
                hiddenField.type = 'hidden';
                hiddenField.name = key;
                hiddenField.value = state[key];
                form.appendChild(hiddenField);
            };
            document.body.appendChild(form);
            form.submit();
            return state;
        }
        """

    submit_hit_button.click(
        lambda state: state,
        inputs=[state],
        outputs=[state],
        _js=post_hit_js,
    )

    refresh_app_js = """
        function(state) {
            // The following line here loads the app again so the user can
            // enter in another preview-mode "HIT".
            window.location.href = window.location.href;
            return state;
        }
        """

    submit_hit_button_preview.click(
        lambda state: state,
        inputs=[state],
        outputs=[state],
        _js=refresh_app_js,
    )

demo.launch()