text-data-filtering / filtering.py
HugoLaurencon's picture
rename badwords to flagged words + new flagged words list of 68 words
f217a73
raw
history blame
30.6 kB
import re
import numpy as np
import fasttext
import sentencepiece
import kenlm
import pathlib
from languages_id import langs_id
from parameters_filtering import parameters_filtering
from normalization import normalization
from stopwords import stopwords
from flagged_words import flagged_words
class LoadParameters:
@staticmethod
def load_parameters(lang_dataset_id):
if lang_dataset_id in parameters_filtering:
param = parameters_filtering[lang_dataset_id]
else:
param = parameters_filtering["default"]
return param
@staticmethod
def load_stopwords(lang_dataset_id):
stopwords_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "stopwords_id"
].iloc[0]
if stopwords_lang_id:
stopwords_lang = set(stopwords[stopwords_lang_id])
else:
stopwords_lang = None
return stopwords_lang
@staticmethod
def load_flagged_words(lang_dataset_id):
flagged_words_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "flagged_words_id"
].iloc[0]
if flagged_words_lang_id:
flagged_words_lang = set(flagged_words[flagged_words_lang_id])
else:
flagged_words_lang = None
return flagged_words_lang
@staticmethod
def load_model_lang_id(lang_dataset_id, path_fasttext_model):
fasttext_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "fasttext_id"
].iloc[0]
if fasttext_lang_id:
model_lang_id = fasttext.load_model(path_fasttext_model)
else:
model_lang_id = None
return model_lang_id
@staticmethod
def load_sentencepiece_model(lang_dataset_id, path_sentencepiece_model):
sentencepiece_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "sentencepiece_id"
].iloc[0]
if sentencepiece_lang_id:
sentencepiece_model = sentencepiece.SentencePieceProcessor()
sentencepiece_model.load(path_sentencepiece_model)
else:
sentencepiece_model = None
return sentencepiece_model
@staticmethod
def load_kenlm_model(lang_dataset_id, path_kenlm_model):
kenlm_lang_id = langs_id.loc[
langs_id["dataset_id"] == lang_dataset_id, "kenlm_id"
].iloc[0]
if kenlm_lang_id:
kenlm_model = kenlm.Model(path_kenlm_model)
else:
kenlm_model = None
return kenlm_model
class ModifyingDocuments:
@staticmethod
def remove_empty_el_from_list(list_):
return [el for el in list_ if el]
@staticmethod
def remove_non_printing_characters(document, non_printing_characters_re):
return non_printing_characters_re.sub("", document)
@staticmethod
def uniform_whitespace(
document,
whitespace=[
" ",
" ",
"β€Š",
"β€―",
"β€…",
"γ€€",
" ",
"Β ",
"β€ˆ",
" ",
"οΏΌ",
"Β„",
],
):
"""There are different whitespace characters."""
whitespace = set(whitespace)
document = "".join(
[char if char not in whitespace else " " for char in document]
)
return document
@staticmethod
def replace_digits_with_zeros(document, digits_re):
return digits_re.sub("0", document)
@staticmethod
def replace_unicode_punctuation(document, unicode_punctuation):
return "".join(unicode_punctuation.get(c, c) for c in document)
@staticmethod
def normalization(
document,
remove_non_printing_characters,
strip,
lower_case,
uniform_whitespace,
replace_digits_with_zeros,
replace_unicode_punctuation,
non_printing_characters_re=normalization["non_printing_characters_re"],
digits_re=normalization["digits_re"],
unicode_punctuation=normalization["unicode_punctuation"],
):
if remove_non_printing_characters:
document = ModifyingDocuments.remove_non_printing_characters(
document, non_printing_characters_re
)
if strip:
document = document.strip()
if not document:
return document
if lower_case:
document = document.lower()
if uniform_whitespace:
document = ModifyingDocuments.uniform_whitespace(document)
if replace_digits_with_zeros:
document = ModifyingDocuments.replace_digits_with_zeros(document, digits_re)
if replace_unicode_punctuation:
document = ModifyingDocuments.replace_unicode_punctuation(
document, unicode_punctuation
)
return document
@staticmethod
def tokenization(document, sentencepiece_model, join_on_whitespace):
document_tokenized = sentencepiece_model.encode_as_pieces(document)
if join_on_whitespace:
document_tokenized = " ".join(document_tokenized)
return document_tokenized
@staticmethod
def split_on_whitespace(
document,
new_line=False,
tab=False,
):
"""This method also removes concatenated spaces."""
sep = [" "] + new_line * ["\n"] + tab * ["\t"]
sep = "|".join(sep)
split_document = re.split(sep, document)
split_document = ModifyingDocuments.remove_empty_el_from_list(split_document)
return split_document
@staticmethod
def strip(document, strip_characters):
"""Way faster than document.strip(strip_characters)
since strip_characters is now a set instead of a str,
and it contains a lot of elements (all the emojis)."""
if not document:
return document
beg_ind = 0
end_ind = len(document)
for i in range(len(document)):
if document[i] in strip_characters:
beg_ind += 1
else:
break
for i in range(1, len(document) + 1):
if document[-i] in strip_characters:
end_ind -= 1
else:
break
document_stripped = document[beg_ind:end_ind]
return document_stripped
@staticmethod
def get_words_from_document(
document, sentencepiece_model_tok, lower_case, strip_characters
):
"""Get words from a document. Non reversible since the document
is split on multiple characters, words are stripped of
special characters and characters are converted to lower case.
Useful to compute ratios, like the stopwords ratio."""
if sentencepiece_model_tok:
document_normalized = ModifyingDocuments.normalization(
document=document,
remove_non_printing_characters=True,
strip=True,
lower_case=True,
uniform_whitespace=True,
replace_digits_with_zeros=True,
replace_unicode_punctuation=True,
)
words = ModifyingDocuments.tokenization(
document_normalized, sentencepiece_model_tok, join_on_whitespace=False
)
else:
words = ModifyingDocuments.split_on_whitespace(
document, new_line=True, tab=True
)
if lower_case:
words = [word.lower() for word in words]
if strip_characters:
words = [ModifyingDocuments.strip(word, strip_characters) for word in words]
words = ModifyingDocuments.remove_empty_el_from_list(words)
return words
@staticmethod
def words_augmentation(words, group_size, join_char):
"""Augment words, especially for Chinese (without a space between words)
and Vietnamese (with a space between syllables)."""
augmentation = [
join_char.join(words[i : i + group_size])
for i in range(len(words) - group_size + 1)
]
return augmentation
@staticmethod
def split_on_newline_tab_whitespace(document):
"""First split on "\n", then on "\t", then on " "."""
sentences = document.split("\n")
sentences = [sentence.split("\t") for sentence in sentences]
sentences = [
[
ModifyingDocuments.split_on_whitespace(subsentence)
for subsentence in sentence
]
for sentence in sentences
]
return sentences
@staticmethod
def merge_on_whitespace_tab_newline(sentences):
"""Invert the method split_on_newline_tab_whitespace.
Removes concatenated separators."""
sentences = [
[" ".join(subsentence) for subsentence in sentence if subsentence]
for sentence in sentences
]
sentences = ["\t".join(sentence) for sentence in sentences if sentence]
if not sentences:
return ""
document = "\n".join(sentences)
return document
@staticmethod
def should_keep_word_with_incorrect_substrings(
word, strip_characters, incorrect_word_substrings
):
word = ModifyingDocuments.strip(word, strip_characters)
should_keep = all(
[(i_substr not in word) for i_substr in incorrect_word_substrings]
)
return should_keep
@staticmethod
def remove_words_with_incorrect_substrings(
document,
strip_characters,
incorrect_word_substrings,
):
sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
sentences = [
[
[
word
for word in subsentence
if ModifyingDocuments.should_keep_word_with_incorrect_substrings(
word, strip_characters, incorrect_word_substrings
)
]
for subsentence in sentence
]
for sentence in sentences
]
document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
return document
@staticmethod
def should_keep_long_word(word, strip_characters, length_word_max_cutoff):
"""If the word is too long but it contains only one
special character, it might be a concatenation of one word,
a punctuation, and another word, with no space between them.
In this case, we give the word a pass."""
if len(word) <= length_word_max_cutoff:
return True
word = ModifyingDocuments.strip(word, strip_characters)
if not word: # The word consisted only of strip characters
return False
if len(word) <= length_word_max_cutoff:
return True
return False
def remove_long_words(
document,
strip_characters,
length_word_max_cutoff,
):
sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
sentences = [
[
[
word
for word in subsentence
if ModifyingDocuments.should_keep_long_word(
word,
strip_characters,
length_word_max_cutoff,
)
]
for subsentence in sentence
]
for sentence in sentences
]
document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
return document
@staticmethod
def modifying_documents(
document,
cond_uniform_whitespace,
cond_replace_unicode_punctuation,
cond_remove_words_with_incorrect_substrings,
strip_characters,
incorrect_word_substrings,
cond_remove_long_words,
length_word_max_cutoff,
):
document = ModifyingDocuments.normalization(
document=document,
remove_non_printing_characters=False,
strip=True,
lower_case=False,
uniform_whitespace=cond_uniform_whitespace,
replace_digits_with_zeros=False,
replace_unicode_punctuation=cond_replace_unicode_punctuation,
)
if cond_remove_words_with_incorrect_substrings:
document = ModifyingDocuments.remove_words_with_incorrect_substrings(
document,
strip_characters,
incorrect_word_substrings,
)
if cond_remove_long_words:
document = ModifyingDocuments.remove_long_words(
document,
strip_characters,
length_word_max_cutoff,
)
return document
class FunctionDatasetModifyingDocuments:
def __init__(self, lang_dataset_id):
self.lang_dataset_id = lang_dataset_id
self.param = LoadParameters.load_parameters(lang_dataset_id)
def __call__(self, example):
example["text"] = ModifyingDocuments.modifying_documents(
document=example["text"],
cond_uniform_whitespace=self.param["cond_uniform_whitespace"],
cond_replace_unicode_punctuation=self.param[
"cond_replace_unicode_punctuation"
],
cond_remove_words_with_incorrect_substrings=self.param[
"cond_remove_words_with_incorrect_substrings"
],
strip_characters=self.param["strip_characters"],
incorrect_word_substrings=self.param["incorrect_word_substrings"],
cond_remove_long_words=self.param["cond_remove_long_words"],
length_word_max_cutoff=self.param["length_word_max_cutoff"],
)
return example
def __reduce__(self):
return (self.__class__, (self.lang_dataset_id,))
class Filtering:
@staticmethod
def check_number_words(
document,
sentencepiece_model_tok,
strip_characters,
number_words_min_cutoff,
number_words_max_cutoff,
):
words = ModifyingDocuments.get_words_from_document(
document,
sentencepiece_model_tok,
lower_case=False,
strip_characters=strip_characters,
)
cond = (len(words) >= number_words_min_cutoff) and (
len(words) <= number_words_max_cutoff
)
return cond
@staticmethod
def compute_repetitions_ratio(document, repetitions_length):
def get_freq_ngrams(document, n):
ngrams = [document[i : i + n] for i in range(len(document) - n + 1)]
freq_ngrams = {}
for ngram in ngrams:
freq_ngrams[ngram] = freq_ngrams.get(ngram, 0) + 1
return freq_ngrams
freq_ngrams = get_freq_ngrams(document, repetitions_length)
if len(freq_ngrams) == 0:
return 0
freq_ngrams = list(freq_ngrams.values())
freq_ngrams = sorted(freq_ngrams, reverse=True)
num_rep_ngrams = int(np.sqrt(len(freq_ngrams)))
repetitions_ratio = sum(freq_ngrams[:num_rep_ngrams]) / sum(freq_ngrams)
return repetitions_ratio
@staticmethod
def check_repetitions_removal(
document,
repetitions_length,
repetitions_max_cutoff,
):
repetitions_ratio = Filtering.compute_repetitions_ratio(
document, repetitions_length
)
cond = repetitions_ratio <= repetitions_max_cutoff
return cond
@staticmethod
def compute_special_characters_ratio(document, special_characters):
if len(document) == 0:
return 0
special_characters_ratio = len(
[char for char in document if char in special_characters]
) / len(document)
return special_characters_ratio
@staticmethod
def check_special_characters(
document,
special_characters,
special_characters_max_cutoff,
):
special_characters_ratio = Filtering.compute_special_characters_ratio(
document, special_characters
)
cond = special_characters_ratio <= special_characters_max_cutoff
return cond
@staticmethod
def compute_stopwords_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
):
words = ModifyingDocuments.get_words_from_document(
document,
sentencepiece_model_tok,
lower_case=True,
strip_characters=strip_characters,
)
if not words:
return 0
augmentation = []
if cond_words_augmentation:
augmentation = [
ModifyingDocuments.words_augmentation(
words, group_size, words_augmentation_join_char
)
for group_size in words_augmentation_group_sizes
]
augmentation = [word for augm in augmentation for word in augm]
stopwords_ratio = len(
[word for word in words + augmentation if word in stopwords]
) / len(words)
if stopwords_ratio > 1.0:
stopwords_ratio = 1.0
return stopwords_ratio
@staticmethod
def check_stopwords(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
stopwords_min_cutoff,
):
cond = True
if stopwords:
stopwords_ratio = Filtering.compute_stopwords_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
)
cond = stopwords_ratio >= stopwords_min_cutoff
return cond
@staticmethod
def compute_flagged_words_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
):
words = ModifyingDocuments.get_words_from_document(
document,
sentencepiece_model_tok,
lower_case=True,
strip_characters=strip_characters,
)
if not words:
return 0
augmentation = []
if cond_words_augmentation:
augmentation = [
ModifyingDocuments.words_augmentation(
words, group_size, words_augmentation_join_char
)
for group_size in words_augmentation_group_sizes
]
augmentation = [word for augm in augmentation for word in augm]
flagged_words_ratio = len(
[word for word in words + augmentation if word in flagged_words]
) / len(words)
if flagged_words_ratio > 1.0:
flagged_words_ratio = 1.0
return flagged_words_ratio
@staticmethod
def check_flagged_words(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
flagged_words_max_cutoff,
):
cond = True
if flagged_words:
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
)
cond = flagged_words_ratio <= flagged_words_max_cutoff
return cond
@staticmethod
def compute_lang_id_pred_score(document, model_lang_id):
document = document.lower().replace("\n", " ")
pred = model_lang_id.predict(document)
lang_pred_fasttext_id = pred[0][0].replace("__label__", "")
score_pred = pred[1][0]
lang_pred_dataset_id = langs_id.loc[
langs_id["fasttext_id"] == lang_pred_fasttext_id, "dataset_id"
]
if len(lang_pred_dataset_id) > 0:
lang_pred_dataset_id = lang_pred_dataset_id.iloc[0]
else:
lang_pred_dataset_id = "unknown"
return lang_pred_dataset_id, score_pred
@staticmethod
def check_lang_id(
document,
lang_dataset_id,
model_lang_id,
lang_id_min_cutoff,
):
cond = True
if model_lang_id:
lang_pred_dataset_id, score_pred = Filtering.compute_lang_id_pred_score(
document, model_lang_id
)
cond = (lang_pred_dataset_id == lang_dataset_id) and (
score_pred >= lang_id_min_cutoff
)
return cond
@staticmethod
def compute_perplexity_score(document, sentencepiece_model, kenlm_model):
document = ModifyingDocuments.normalization(
document=document,
remove_non_printing_characters=True,
strip=True,
lower_case=True,
uniform_whitespace=True,
replace_digits_with_zeros=True,
replace_unicode_punctuation=True,
)
document = ModifyingDocuments.tokenization(
document, sentencepiece_model, join_on_whitespace=True
)
doc_log_score, doc_length = 0, 0
for line in document.split("\n"):
log_score = kenlm_model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
pp_score = 10.0 ** (-doc_log_score / doc_length)
pp_score = round(pp_score, 1)
return pp_score
@staticmethod
def check_perplexity(
document,
sentencepiece_model,
kenlm_model,
perplexity_max_cutoff,
):
cond = True
if kenlm_model:
score = Filtering.compute_perplexity_score(
document, sentencepiece_model, kenlm_model
)
cond = score <= perplexity_max_cutoff
return cond
@staticmethod
def filtering(
document,
cond_check_number_words,
sentencepiece_model_tok,
strip_characters,
number_words_min_cutoff,
number_words_max_cutoff,
cond_check_repetitions_removal,
repetitions_length,
repetitions_max_cutoff,
cond_check_special_characters,
special_characters,
special_characters_max_cutoff,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
cond_check_stopwords,
stopwords,
stopwords_min_cutoff,
cond_check_flagged_words,
flagged_words,
flagged_words_max_cutoff,
cond_check_lang_id,
lang_dataset_id,
model_lang_id,
lang_id_min_cutoff,
cond_check_perplexity,
sentencepiece_model,
kenlm_model,
perplexity_max_cutoff,
):
if cond_check_number_words:
if not Filtering.check_number_words(
document,
sentencepiece_model_tok,
strip_characters,
number_words_min_cutoff,
number_words_max_cutoff,
):
return False
if cond_check_repetitions_removal:
if not Filtering.check_repetitions_removal(
document,
repetitions_length,
repetitions_max_cutoff,
):
return False
if cond_check_special_characters:
if not Filtering.check_special_characters(
document,
special_characters,
special_characters_max_cutoff,
):
return False
if cond_check_stopwords:
if not Filtering.check_stopwords(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
stopwords,
stopwords_min_cutoff,
):
return False
if cond_check_flagged_words:
if not Filtering.check_flagged_words(
document,
sentencepiece_model_tok,
strip_characters,
cond_words_augmentation,
words_augmentation_group_sizes,
words_augmentation_join_char,
flagged_words,
flagged_words_max_cutoff,
):
return False
if cond_check_lang_id:
if not Filtering.check_lang_id(
document,
lang_dataset_id,
model_lang_id,
lang_id_min_cutoff,
):
return False
if cond_check_perplexity:
if not Filtering.check_perplexity(
document,
sentencepiece_model,
kenlm_model,
perplexity_max_cutoff,
):
return False
return True
class FunctionDatasetFiltering:
def __init__(
self,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
):
self.lang_dataset_id = lang_dataset_id
self.path_fasttext_model = path_fasttext_model
self.path_sentencepiece_model = path_sentencepiece_model
self.path_kenlm_model = path_kenlm_model
self.param = LoadParameters.load_parameters(lang_dataset_id)
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
self.model_lang_id = LoadParameters.load_model_lang_id(
lang_dataset_id, path_fasttext_model
)
self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
lang_dataset_id, path_sentencepiece_model
)
self.sentencepiece_model_tok = (
self.sentencepiece_model if self.param["tokenization"] else None
)
self.kenlm_model = LoadParameters.load_kenlm_model(
lang_dataset_id, path_kenlm_model
)
def __call__(self, example):
keep_example = Filtering.filtering(
document=example["text"],
cond_check_number_words=self.param["cond_check_number_words"],
sentencepiece_model_tok=self.sentencepiece_model_tok,
strip_characters=self.param["strip_characters"],
number_words_min_cutoff=self.param["number_words_min_cutoff"],
number_words_max_cutoff=self.param["number_words_max_cutoff"],
cond_check_repetitions_removal=self.param["check_repetitions_removal"],
repetitions_length=self.param["repetitions_length"],
repetitions_max_cutoff=self.param["repetitions_max_cutoff"],
cond_check_special_characters=self.param["cond_check_special_characters"],
special_characters=self.param["special_characters"],
special_characters_max_cutoff=self.param["special_characters_max_cutoff"],
cond_words_augmentation=self.param["cond_words_augmentation"],
words_augmentation_group_sizes=self.param["words_augmentation_group_sizes"],
words_augmentation_join_char=self.param["words_augmentation_join_char"],
cond_check_stopwords=self.param["cond_check_stopwords"],
stopwords=self.stopwords,
stopwords_min_cutoff=self.param["stopwords_min_cutoff"],
cond_check_flagged_words=self.param["cond_check_flagged_words"],
flagged_words=self.flagged_words,
flagged_words_max_cutoff=self.param["flagged_words_max_cutoff"],
cond_check_lang_id=self.param["cond_check_lang_id"],
lang_dataset_id=self.lang_dataset_id,
model_lang_id=self.model_lang_id,
lang_id_min_cutoff=self.param["lang_id_min_cutoff"],
cond_check_perplexity=self.param["cond_check_perplexity"],
sentencepiece_model=self.sentencepiece_model,
kenlm_model=self.kenlm_model,
perplexity_max_cutoff=self.param["perplexity_max_cutoff"],
)
return keep_example
def __reduce__(self):
return (
self.__class__,
(
self.lang_dataset_id,
self.path_fasttext_model,
self.path_sentencepiece_model,
self.path_kenlm_model,
),
)
class DatasetFiltering:
def __init__(
self,
dataset,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
num_proc,
path_dir_save_dataset,
):
self.ds = dataset
self.lang_dataset_id = lang_dataset_id
self.path_fasttext_model = path_fasttext_model
self.path_sentencepiece_model = path_sentencepiece_model
self.path_kenlm_model = path_kenlm_model
self.num_proc = num_proc
self.path_dir_save_dataset = path_dir_save_dataset
def modifying_documents(self):
dataset_modifying_documents = FunctionDatasetModifyingDocuments(
self.lang_dataset_id
)
self.ds = self.ds.map(dataset_modifying_documents, num_proc=self.num_proc)
def filtering(self):
func_dataset_filtering = FunctionDatasetFiltering(
self.lang_dataset_id,
self.path_fasttext_model,
self.path_sentencepiece_model,
self.path_kenlm_model,
)
self.ds = self.ds.filter(func_dataset_filtering, num_proc=self.num_proc)
def save_dataset(self):
pathlib.Path(self.path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
path_dir_save_dataset = pathlib.PurePath(
self.path_dir_save_dataset, self.lang_dataset_id
)
pathlib.Path(path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
self.ds.save_to_disk(path_dir_save_dataset)