HugoLaurencon
commited on
Commit
•
5d56c36
1
Parent(s):
1bc0c1e
visualization: upload our own stop words and flagged words list
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import streamlit as st
|
|
4 |
|
5 |
import os
|
6 |
|
|
|
7 |
import base64
|
8 |
import json
|
9 |
import pandas as pd
|
@@ -65,10 +66,6 @@ class Visualization:
|
|
65 |
)
|
66 |
|
67 |
def preamble(self):
|
68 |
-
st.markdown(
|
69 |
-
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail."
|
70 |
-
)
|
71 |
-
|
72 |
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
73 |
with open(bin_file, "rb") as f:
|
74 |
data = f.read()
|
@@ -77,10 +74,12 @@ class Visualization:
|
|
77 |
return href
|
78 |
|
79 |
st.markdown(
|
80 |
-
|
|
|
81 |
self.path_instructions,
|
82 |
-
"
|
83 |
-
)
|
|
|
84 |
unsafe_allow_html=True,
|
85 |
)
|
86 |
|
@@ -196,7 +195,9 @@ class Visualization:
|
|
196 |
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
197 |
"not want to discard such documents."
|
198 |
)
|
199 |
-
self.docs = self.docs_checkpoint
|
|
|
|
|
200 |
for i in range(len(self.docs["repetitions_ratio"])):
|
201 |
self.docs["repetitions_ratio"].iloc[i] = self.docs[
|
202 |
"repetitions_ratio"
|
@@ -237,6 +238,29 @@ class Visualization:
|
|
237 |
|
238 |
if "stopwords_ratio" in columns:
|
239 |
with st.sidebar.expander("Stop words ratio"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
241 |
cutoff_stopwords_ratio = st.slider(
|
242 |
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
@@ -250,6 +274,29 @@ class Visualization:
|
|
250 |
|
251 |
if "flagged_words_ratio" in columns:
|
252 |
with st.sidebar.expander("Flagged words ratio"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
254 |
cutoff_flagged_words_ratio = st.slider(
|
255 |
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
|
|
4 |
|
5 |
import os
|
6 |
|
7 |
+
from io import StringIO
|
8 |
import base64
|
9 |
import json
|
10 |
import pandas as pd
|
|
|
66 |
)
|
67 |
|
68 |
def preamble(self):
|
|
|
|
|
|
|
|
|
69 |
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
70 |
with open(bin_file, "rb") as f:
|
71 |
data = f.read()
|
|
|
74 |
return href
|
75 |
|
76 |
st.markdown(
|
77 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
|
78 |
+
+ get_binary_file_downloader_html(
|
79 |
self.path_instructions,
|
80 |
+
"pdf",
|
81 |
+
)
|
82 |
+
+ ".",
|
83 |
unsafe_allow_html=True,
|
84 |
)
|
85 |
|
|
|
195 |
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
196 |
"not want to discard such documents."
|
197 |
)
|
198 |
+
self.docs["repetitions_ratio"] = self.docs_checkpoint[
|
199 |
+
"repetitions_ratio"
|
200 |
+
]
|
201 |
for i in range(len(self.docs["repetitions_ratio"])):
|
202 |
self.docs["repetitions_ratio"].iloc[i] = self.docs[
|
203 |
"repetitions_ratio"
|
|
|
238 |
|
239 |
if "stopwords_ratio" in columns:
|
240 |
with st.sidebar.expander("Stop words ratio"):
|
241 |
+
stopwords_file = st.file_uploader(
|
242 |
+
"Upload your own list of stop words (one per line). If there is none, the default one is used."
|
243 |
+
)
|
244 |
+
if stopwords_file:
|
245 |
+
new_stopwords = StringIO(
|
246 |
+
stopwords_file.getvalue().decode("utf-8")
|
247 |
+
).read()
|
248 |
+
new_stopwords = set(new_stopwords.split("\n"))
|
249 |
+
self.docs["stopwords_ratio"] = self.docs_checkpoint[
|
250 |
+
"stopwords_ratio"
|
251 |
+
]
|
252 |
+
for i in range(len(self.docs["stopwords_ratio"])):
|
253 |
+
self.docs["stopwords_ratio"].iloc[
|
254 |
+
i
|
255 |
+
] = Filtering.compute_stopwords_ratio(
|
256 |
+
self.docs["text"].iloc[i],
|
257 |
+
self.sentencepiece_model_tok,
|
258 |
+
self.param["strip_characters"],
|
259 |
+
self.param["cond_words_augmentation"],
|
260 |
+
self.param["words_augmentation_group_sizes"],
|
261 |
+
self.param["words_augmentation_join_char"],
|
262 |
+
new_stopwords,
|
263 |
+
)
|
264 |
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
265 |
cutoff_stopwords_ratio = st.slider(
|
266 |
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
|
|
274 |
|
275 |
if "flagged_words_ratio" in columns:
|
276 |
with st.sidebar.expander("Flagged words ratio"):
|
277 |
+
flagged_words_file = st.file_uploader(
|
278 |
+
"Upload your own list of flagged words (one per line). If there is none, the default one is used."
|
279 |
+
)
|
280 |
+
if flagged_words_file:
|
281 |
+
new_flagged_words = StringIO(
|
282 |
+
flagged_words_file.getvalue().decode("utf-8")
|
283 |
+
).read()
|
284 |
+
new_flagged_words = set(new_flagged_words.split("\n"))
|
285 |
+
self.docs["flagged_words_ratio"] = self.docs_checkpoint[
|
286 |
+
"flagged_words_ratio"
|
287 |
+
]
|
288 |
+
for i in range(len(self.docs["flagged_words_ratio"])):
|
289 |
+
self.docs["flagged_words_ratio"].iloc[
|
290 |
+
i
|
291 |
+
] = Filtering.compute_flagged_words_ratio(
|
292 |
+
self.docs["text"].iloc[i],
|
293 |
+
self.sentencepiece_model_tok,
|
294 |
+
self.param["strip_characters"],
|
295 |
+
self.param["cond_words_augmentation"],
|
296 |
+
self.param["words_augmentation_group_sizes"],
|
297 |
+
self.param["words_augmentation_join_char"],
|
298 |
+
new_flagged_words,
|
299 |
+
)
|
300 |
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
301 |
cutoff_flagged_words_ratio = st.slider(
|
302 |
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|