import gradio as gr import torch from huggingface_hub import from_pretrained_fastai from pathlib import Path examples = ["llama.jpg", "alpaca.png"] repo_id = "osanseviero/llama_or_alpaca" path = Path("./") def get_y(r): return r["label"] def get_x(r): return path/r["fname"] learner = from_pretrained_fastai(repo_id) labels = learner.dls.vocab def inference(image): label_predict,_,probs = learner.predict(image) labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} return labels_probs gr.Interface( fn=inference, title="Llama or alpaca", description = "Predict if this image has a llama or an alpaca", inputs="image", outputs="label", examples=examples, ).launch(debug=True, enable_queue=True)