File size: 8,256 Bytes
f6d5624
 
982cb18
f71c47a
f6d5624
 
 
 
 
 
 
 
 
 
 
 
 
f893897
fc5fac6
8a5aec8
fc5fac6
 
f6d5624
 
 
 
 
 
 
 
 
 
 
 
 
046be03
f6d5624
 
 
 
046be03
f6d5624
 
 
 
046be03
f6d5624
f71c47a
f6d5624
 
f71c47a
f6d5624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664d7c4
f6d5624
 
 
664d7c4
f6d5624
 
 
 
 
 
 
 
664d7c4
f6d5624
 
f71c47a
 
f6d5624
 
 
 
f71c47a
 
f6d5624
 
664d7c4
f71c47a
f6d5624
664d7c4
f71c47a
f6d5624
 
f71c47a
f6d5624
 
f71c47a
f6d5624
 
 
664d7c4
f6d5624
046be03
f6d5624
 
664d7c4
f6d5624
 
 
 
664d7c4
f6d5624
 
 
664d7c4
f6d5624
 
664d7c4
f6d5624
664d7c4
f6d5624
 
664d7c4
f6d5624
 
 
664d7c4
 
f6d5624
 
 
 
 
 
 
f71c47a
f6d5624
 
 
 
 
 
664d7c4
f71c47a
f6d5624
 
 
 
 
 
664d7c4
f6d5624
 
 
 
 
 
 
664d7c4
f6d5624
 
 
046be03
f6d5624
 
046be03
f6d5624
046be03
f6d5624
 
046be03
f6d5624
f71c47a
f6d5624
 
 
 
 
 
 
 
 
 
 
 
 
f71c47a
f6d5624
 
 
 
 
f71c47a
f6d5624
 
 
 
f71c47a
f6d5624
 
 
 
 
 
 
 
 
 
f71c47a
f6d5624
f71c47a
046be03
f6d5624
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import gradio as gr
#from transformers import pipeline 
import torch
from utils import *
from presets import *

#antwort=""
######################################################################
#Modelle und Tokenizer

#Hugging Chat nutzen
# Create a chatbot connection
#chatbot = hugchat.ChatBot(cookie_path="cookies.json")

#base_model = "project-baize/baize-v2-7b"
#base_model = "EleutherAI/gpt-neo-1.3B"
#base_model = "EleutherAI/gpt-neo-2.7B"
base_model = "dbmdz/electra-base-italian-xxl-cased-discriminator"

tokenizer,model,device = load_tokenizer_and_model(base_model)


########################################################################
#Chat KI nutzen, um Text zu generieren...
def predict(text,
            chatbotGr,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,):
    if text=="":
        yield chatbotGr,history,"Testo vuoto."
        return 
    try:
        model
    except:
        yield [[text,"Nessun modello trovato"]],[],"Nessun modello trovato"
        return

    inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
    if inputs is None:
        yield chatbotGr,history,"Input troppo lungo."
        return 
    else:
        prompt,inputs=inputs
        begin_length = len(prompt)
        
    input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device)
    torch.cuda.empty_cache()

    #torch.no_grad() bedeutet, dass für die betreffenden tensoren keine Ableitungen berechnet werden bei der backpropagation 
    #hier soll das NN ja auch nicht geändert werden 8backprop ist nicht nötig), da es um interference-prompts geht!
    with torch.no_grad():
        #die vergangenen prompts werden alle als Tupel in history abgelegt sortiert nach 'Human' und 'AI'- dass sind daher auch die stop-words, die den jeweils nächsten Eintrag kennzeichnen        
        for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
            if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
                if "[|Human|]" in x:
                    x = x[:x.index("[|Human|]")].strip()
                if "[|AI|]" in x:
                    x = x[:x.index("[|AI|]")].strip() 
                x = x.strip()   
                a, b=   [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
                yield a, b, "Sto elaborando ..."
            if shared_state.interrupted:
                shared_state.recover()
                try:
                    yield a, b, "Stop: OK"
                    return
                except:
                    pass
    del input_ids
    gc.collect()
    torch.cuda.empty_cache()
    
    try:
        yield a,b,"Generazione: OK"
    except:
        pass


def reset_chat():
    #id_new = chatbot.new_conversation()
    #chatbot.change_conversation(id_new)
    reset_textbox()
    
    
##########################################################
def translate():
    return "In costruzione"
    
def coding():
    return "In costruzione"

#######################################################################
#Darstellung mit Gradio

with open("custom.css", "r", encoding="utf-8") as f:
    customCSS = f.read()
    
with gr.Blocks(theme=small_and_beautiful_theme) as demo:
    history = gr.State([])
    user_question = gr.State("")
    gr.Markdown("Scegli cosa vuoi provare:")
    with gr.Tabs():
        with gr.TabItem("Chat"):
            with gr.Row():
                gr.HTML(title)
                status_display = gr.Markdown("OK", elem_id="status_display")
            gr.Markdown(description_top)
            with gr.Row(scale=1).style(equal_height=True):
                with gr.Column(scale=5):
                    with gr.Row(scale=1):
                        chatbotGr = gr.Chatbot(elem_id="Chat").style(height="100%")
                    with gr.Row(scale=1):
                        with gr.Column(scale=12):
                            user_input = gr.Textbox(
                                show_label=False, placeholder="Inserisci il tuo testo / domanda"
                            ).style(container=False)
                        with gr.Column(min_width=100, scale=1):
                            submitBtn = gr.Button("Invia")
                        with gr.Column(min_width=100, scale=1):
                            cancelBtn = gr.Button("Cancella")
                    with gr.Row(scale=1):
                        emptyBtn = gr.Button(
                            "🧹 Nuova Chat",
                        )
                with gr.Column():
                    with gr.Column(min_width=50, scale=1):
                        with gr.Tab(label="Parametri del modello"):
                            gr.Markdown("# Parametri")
                            top_p = gr.Slider(
                                minimum=-0,
                                maximum=1.0,
                                value=0.95,
                                step=0.05,
                                interactive=True,
                                label="Top-p",
                            )
                            temperature = gr.Slider(
                                minimum=0.1,
                                maximum=2.0,
                                value=1,
                                step=0.1,
                                interactive=True,
                                label="Temperatura",
                            )
                            max_length_tokens = gr.Slider(
                                minimum=0,
                                maximum=512,
                                value=512,
                                step=8,
                                interactive=True,
                                label="Numeno massimo di parole",
                            )
                            max_context_length_tokens = gr.Slider(
                                minimum=0,
                                maximum=4096,
                                value=2048,
                                step=128,
                                interactive=True,
                                label="Numero massimo di parole memorizzate",
                            )
            gr.Markdown(description)

        with gr.TabItem("Traduzioni"):
            with gr.Row():
                    gr.Textbox(
                                show_label=False, placeholder="In costruzione ..."
                            ).style(container=False)
        with gr.TabItem("Generazione di codice"):
            with gr.Row():
                    gr.Textbox(
                                show_label=False, placeholder="In costruzione ..."
                            ).style(container=False)
    
    predict_args = dict(
        fn=predict,
        inputs=[
            user_question,
            chatbotGr,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbotGr, history, status_display],
        show_progress=True,
    )
        
    #neuer Chat
    reset_args = dict(
        #fn=reset_chat, inputs=[], outputs=[user_input, status_display]
        fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
    )
            
    # Chatbot
    transfer_input_args = dict(
        fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True
    )
        
    #Listener auf Start-Click auf Button oder Return
    predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args)
    predict_event2 = submitBtn.click(**transfer_input_args).then(**predict_args)
        
    #Listener, Wenn reset...
    emptyBtn.click(
        reset_state,
        outputs=[chatbotGr, history, status_display],
        show_progress=True,
    )
    emptyBtn.click(**reset_args)

demo.title = "Chat"
#demo.queue(concurrency_count=1).launch(share=True) 
demo.queue(concurrency_count=1).launch(debug=True)