File size: 22,076 Bytes
f71c47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import re
import yaml
import gc
import copy
import time
from tenacity import RetryError
from tenacity import retry, stop_after_attempt, wait_fixed
import gradio as gr
import torch
from peft import PeftModel
from transformers import (
    LLaMATokenizer, 
    LLaMAForCausalLM, 
    GenerationConfig,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    LogitsProcessorList,
    MinNewTokensLengthLogitsProcessor,
    TemperatureLogitsWarper,
    TopPLogitsWarper,
    MinLengthLogitsProcessor
)

assert torch.cuda.is_available(), "Change the runtime type to GPU"

# constants
num_of_characters_to_keep = 1000

# regex
html_tag_pattern = re.compile(r"<.*?>")
multi_line_pattern = re.compile(r"\n+")
multi_space_pattern = re.compile(r"(  )")
multi_br_tag_pattern = re.compile(re.compile(r'<br>\s*(<br>\s*)*'))
    
# repl is short for replacement
repl_linebreak = "\n"
repl_empty_str = ""

TITLE = "🦌 Stambecco 🇮🇹"

ABSTRACT = """
Stambecco is a Italian Instruction-following model based on the [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model. It comes in two versions: 7b and 13b parameters. It is trained on an Italian version of the [GPT-4-LLM](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) dataset, a dataset of `GPT-4` generated instruction-following data.
This demo is intended to show and evaluate the conversational capabilities of the model.
For more information, please visit [the project's website](https://github.com/mchl-labs/stambecco).
NOTE: Too long input (context, instruction) will not be allowed. Please keep context < 500 and instruction < 150
"""

BOTTOM_LINE = """
By default, this demo runs with streaming mode, but you can also run with dynamic batch generation model.
Stambecco is built on the same concept as Standford Alpaca project, but using LoRA it lets us train and inference on a smaller GPUs such as RTX4090 for 7B version. Also, we could build very small size of checkpoints on top of base models thanks to [🤗 transformers](https://huggingface.co/docs/transformers/index), [🤗 peft](https://github.com/huggingface/peft), and [bitsandbytes](https://github.com/TimDettmers/bitsandbytes/tree/main) libraries.
This demo currently runs 8Bit 7b version of the model.
"""

DEFAULT_EXAMPLES = {
    "Typical Questions": [
        {
            "title": "Parlami di Giulio Cesare.",
            "examples": [
                ["1", "Scrivi un articolo su Giulio Cesare"],
                ["2", "Davvero?"],
                ["3", "Quanto era ricco Giulio Cesare?"],
                ["4", "Chi è stato il suo successore?"],
            ]
        },
        {
            "title": "Parigi",
            "examples": [
                ["1", "Scrivi un tema sulla città di Parigi"],
                ["2", "Fai un elenco di 5 posti da visitare assolutamente"],
                ["3", "Quali eventi importanti della Storia sono avvenuti a Parigi?"],
                ["4", "Quale è il periodo migliore per visitare Parigi?"],
            ]
        },
        {
            "title": "Scrivi un programma in Python che stampi i primi 10 numeri di Fibonacci",
            "examples": [
                ["1", "Scrivi un programma in Python che stampi i primi 10 numeri di Fibonacci"],
                ["2", "Potresti spiegarmi come funziona il codice?"],
                ["3", "Cos'è la ricorsione?"],
            ]
        }
    ],
}

SPECIAL_STRS = {
    "continue": "continua",
    "summarize": "Di cosa abbiamo discusso finora? Descrivi nella user's view."
}

PARENT_BLOCK_CSS = """
#col_container {
    width: 95%; 
    margin-left: auto; 
    margin-right: auto;
}
#chatbot {
    height: 500px; 
    overflow: auto;
}
"""

def load_model(
    base="decapoda-research/llama-7b-hf",
    finetuned="mchl-labs/stambecco-7b-plus",
):
    tokenizer = LLaMATokenizer.from_pretrained(base)
    tokenizer.pad_token_id = 0
    tokenizer.padding_side = "left"

    model = LLaMAForCausalLM.from_pretrained(
        base,
        load_in_8bit=True,
        device_map="auto",
    )
#    model = PeftModel.from_pretrained(model, finetuned, device_map={'': 0})
    
    model = PeftModel.from_pretrained(model, finetuned)
    return model, tokenizer

def get_generation_config(path):
    with open(path, 'rb') as f:
        generation_config = yaml.safe_load(f.read())

    return GenerationConfig(**generation_config["generation_config"])

def generate_prompt(prompt, histories, ctx=None, partial=False):
    convs = f"""Di seguito è riportata una cronologia delle istruzioni che descrivono le tasks, abbinate a un input che fornisce ulteriore contesto. Scrivi una risposta che completi adeguatamente la richiesta ricordando la cronologia della conversazione.

"""

    if ctx is not None:
        convs = f"""### Input: {ctx}
"""

    sub_convs = ""
    start_idx = 0
    
    for idx, history in enumerate(histories):
        history_prompt = history[0]
        history_response = history[1]
        if history_response == "✅ Riepilogo della conversazione effettuato e impostato come contesto" or history_prompt == SPECIAL_STRS["summarize"]:
            start_idx = idx

    # drop the previous conversations if user has summarized
    for history in histories[start_idx if start_idx == 0 else start_idx+1:]:
        history_prompt = history[0]
        history_response = history[1]
        
        history_response = history_response.replace("<br>", "\n")
        history_response = re.sub(
            html_tag_pattern, repl_empty_str, history_response
        )

        sub_convs = sub_convs + f"""### Istruzione: {history_prompt}
### Risposta: {history_response}
"""

    sub_convs = sub_convs + f"""### Istruzione: {prompt}
### Risposta:"""

    convs = convs + sub_convs
    return sub_convs if partial else convs, len(sub_convs)

def common_post_process(original_str):
    original_str = re.sub(
        multi_line_pattern, repl_linebreak, original_str
    )
    return original_str

def post_process_stream(bot_response):
    # sometimes model spits out text containing 
    # "### Risposta:" and "### Istruzione: -> in this case, we want to stop generating
    if "### Risposta:" in bot_response or "### Input:" in bot_response:
        bot_response = bot_response.replace("### Risposta:", '').replace("### Input:", '').strip()
        return bot_response, True
    
    return common_post_process(bot_response), False

def post_process_batch(bot_response):
    bot_response = bot_response.split("### Risposta:")[-1].strip()
    return common_post_process(bot_response)

def post_processes_batch(bot_responses):
    return [post_process_batch(r) for r in bot_responses]

def get_output_batch(
    model, tokenizer, prompts, generation_config
):
    if len(prompts) == 1:
        encoding = tokenizer(prompts, return_tensors="pt")
        input_ids = encoding["input_ids"].cuda()
        generated_id = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            max_new_tokens=256
        )

        decoded = tokenizer.batch_decode(generated_id)
        del input_ids, generated_id
        torch.cuda.empty_cache()
        return decoded
    else:
        encodings = tokenizer(prompts, padding=True, return_tensors="pt").to('cuda')
        generated_ids = model.generate(
            **encodings,
            generation_config=generation_config,
            max_new_tokens=256
        )

        decoded = tokenizer.batch_decode(generated_ids)
        del encodings, generated_ids
        torch.cuda.empty_cache()
        return decoded


# StreamModel is borrowed from basaran project
# please find more info about it -> https://github.com/hyperonym/basaran
class StreamModel:
    """StreamModel wraps around a language model to provide stream decoding."""

    def __init__(self, model, tokenizer):
        super().__init__()
        self.model = model
        self.tokenizer = tokenizer
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        self.processor = LogitsProcessorList()
        self.processor.append(TemperatureLogitsWarper(0.9))
        self.processor.append(TopPLogitsWarper(0.75))


    def __call__(
        self,
        prompt,
        min_tokens=0,
        max_tokens=16,
        temperature=1.0,
        top_p=1.0,
        n=1,
        logprobs=0,
    ):
        """Create a completion stream for the provided prompt."""
        input_ids = self.tokenize(prompt)
        logprobs = max(logprobs, 0)

        # bigger than 1
        chunk_size = 2
        chunk_count = 0
        
        # Generate completion tokens.
        final_tokens = torch.empty(0)
        
        for tokens in self.generate(
            input_ids[None, :].repeat(n, 1),
            logprobs=logprobs,
            min_new_tokens=min_tokens,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        ):
            if chunk_count < chunk_size:
                chunk_count = chunk_count + 1        
            
            final_tokens = torch.cat((final_tokens, tokens.to("cpu")))

            if chunk_count == chunk_size-1:
                chunk_count = 0
                yield self.tokenizer.decode(final_tokens, skip_special_tokens=True)

        if chunk_count > 0:
            yield self.tokenizer.decode(final_tokens, skip_special_tokens=True)
                
        del final_tokens, input_ids
        if self.device == "cuda": 
            torch.cuda.empty_cache()

    def _infer(self, model_fn, **kwargs):
        with torch.inference_mode():
            return model_fn(**kwargs)

    def tokenize(self, text):
        """Tokenize a string into a tensor of token IDs."""
        batch = self.tokenizer.encode(text, return_tensors="pt")
        return batch[0].to(self.device)

    def generate(self, input_ids, logprobs=0, **kwargs):
        """Generate a stream of predicted tokens using the language model."""

        # Store the original batch size and input length.
        batch_size = input_ids.shape[0]
        input_length = input_ids.shape[-1]

        # Separate model arguments from generation config.
        config = self.model.generation_config
        config = copy.deepcopy(config)
        kwargs = config.update(**kwargs)
        kwargs["output_attentions"] = False
        kwargs["output_hidden_states"] = False
        kwargs["use_cache"] = True

        # Collect special token IDs.
        pad_token_id = config.pad_token_id
        bos_token_id = config.bos_token_id
        eos_token_id = config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        if pad_token_id is None and eos_token_id is not None:
            pad_token_id = eos_token_id[0]

        # Generate from eos if no input is specified.
        if input_length == 0:
            input_ids = input_ids.new_ones((batch_size, 1)).long()
            if eos_token_id is not None:
                input_ids = input_ids * eos_token_id[0]
            input_length = 1

        # Keep track of which sequences are already finished.
        unfinished = input_ids.new_ones(batch_size)

        # Start auto-regressive generation.
        while True:
            inputs = self.model.prepare_inputs_for_generation(
                input_ids, **kwargs
            )  # noqa: E501

            outputs = self._infer(
                self.model,
                **inputs,
                # return_dict=True,
                output_attentions=False,
                output_hidden_states=False,
            )

            # Pre-process the probability distribution of the next tokens.
            logits = outputs.logits[:, -1, :]
            with torch.inference_mode():
                logits = self.processor(input_ids, logits)
            probs = torch.nn.functional.softmax(logits, dim=-1)

            # Select deterministic or stochastic decoding strategy.
            if (config.top_p is not None and config.top_p <= 0) or (
                config.temperature is not None and config.temperature <= 0
            ):
                tokens = torch.argmax(probs, dim=-1)[:, None]
            else:
                tokens = torch.multinomial(probs, num_samples=1)

            tokens = tokens.squeeze(1)

            # Finished sequences should have their next token be a padding.
            if pad_token_id is not None:
                tokens = tokens * unfinished + pad_token_id * (1 - unfinished)

            # Append selected tokens to the inputs.
            input_ids = torch.cat([input_ids, tokens[:, None]], dim=-1)

            # Mark sequences with eos tokens as finished.
            if eos_token_id is not None:
                not_eos = sum(tokens != i for i in eos_token_id)
                unfinished = unfinished.mul(not_eos.long())

            # Set status to -1 if exceeded the max length.
            status = unfinished.clone()
            if input_ids.shape[-1] - input_length >= config.max_new_tokens:
                status = 0 - status

            # Yield predictions and status.
            yield tokens

            # Stop when finished or exceeded the max length.
            if status.max() <= 0:
                break

generation_config = get_generation_config(
    "./generation_config_default.yaml"
)

model, tokenizer = load_model(
    # base="decapoda-research/llama-13b-hf",
    # finetuned="mchl-labs/stambecco-13b-plus",
)    

stream_model = StreamModel(model, tokenizer)

def chat_stream(
    context,
    instruction,
    state_chatbot,
):
    if len(context) > 1000 or len(instruction) > 300:
        raise gr.Error("Context or prompt is too long!")
        
    bot_summarized_response = ''
    # user input should be appropriately formatted (don't be confused by the function name)
    instruction_display = instruction
    instruction_prompt, conv_length = generate_prompt(instruction, state_chatbot, context)
    
    if conv_length > num_of_characters_to_keep:
        instruction_prompt = generate_prompt(SPECIAL_STRS["summarize"], state_chatbot, context, partial=True)[0]
        
        state_chatbot = state_chatbot + [
            (
                None, 
                "![](https://s2.gifyu.com/images/icons8-loading-circle.gif) Conversazione troppo lunga, sto riassumendo..."
            )
        ]
        yield (state_chatbot, state_chatbot, context)
        
        bot_summarized_response = get_output_batch(
            model, tokenizer, [instruction_prompt], generation_config
        )[0]
        bot_summarized_response = bot_summarized_response.split("### Risposta:")[-1].strip()
        
        state_chatbot[-1] = (
            None, 
            "✅ Riepilogo della conversazione effettuato e impostato come contesto"
        )
        print(f"bot_summarized_response: {bot_summarized_response}")
        yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
        
    instruction_prompt = generate_prompt(instruction, state_chatbot, f"{context} {bot_summarized_response}")[0]
    
    bot_response = stream_model(
        instruction_prompt,
        max_tokens=256,
        temperature=1,
        top_p=0.9
    )
    
    instruction_display = None if instruction_display == SPECIAL_STRS["continue"] else instruction_display
    state_chatbot = state_chatbot + [(instruction_display, None)]
    yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
    
    prev_index = 0
    agg_tokens = ""
    cutoff_idx = 0
    for tokens in bot_response:
        tokens = tokens.strip()
        cur_token = tokens[prev_index:]
        
        if "#" in cur_token and agg_tokens == "":
            cutoff_idx = tokens.find("#")
            agg_tokens = tokens[cutoff_idx:]

        if agg_tokens != "":
            if len(agg_tokens) < len("### Istruzione:") :
                agg_tokens = agg_tokens + cur_token
            elif len(agg_tokens) >= len("### Istruzione:"):
                if tokens.find("### Istruzione:") > -1:
                    processed_response, _ = post_process_stream(tokens[:tokens.find("### Istruzione:")].strip())

                    state_chatbot[-1] = (
                        instruction_display, 
                        processed_response
                    )
                    yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())
                    break
                else:
                    agg_tokens = ""
                    cutoff_idx = 0

        if agg_tokens == "":
            processed_response, to_exit = post_process_stream(tokens)
            state_chatbot[-1] = (instruction_display, processed_response)
            yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())

            if to_exit:
                break

        prev_index = len(tokens)

    yield (
        state_chatbot,
        state_chatbot,
        f"{context} {bot_summarized_response}".strip()
    )


def chat_batch(
    contexts,
    instructions, 
    state_chatbots,
):
    state_results = []
    ctx_results = []

    instruct_prompts = [
        generate_prompt(instruct, histories, ctx) 
        for ctx, instruct, histories in zip(contexts, instructions, state_chatbots)
    ]
        
    bot_responses = get_output_batch(
        model, tokenizer, instruct_prompts, generation_config
    )
    bot_responses = post_processes_batch(bot_responses)

    for ctx, instruction, bot_response, state_chatbot in zip(contexts, instructions, bot_responses, state_chatbots):
        new_state_chatbot = state_chatbot + [('' if instruction == SPECIAL_STRS["continue"] else instruction, bot_response)]
        ctx_results.append(gr.Textbox.update(value=bot_response) if instruction == SPECIAL_STRS["summarize"] else ctx)
        state_results.append(new_state_chatbot)

    return (state_results, state_results, ctx_results)

def reset_textbox():
    return gr.Textbox.update(value='')

def reset_everything(
    context_txtbox, 
    instruction_txtbox, 
    state_chatbot):

    state_chatbot = []
    
    return (
        state_chatbot,
        state_chatbot,
        gr.Textbox.update(value=''),
        gr.Textbox.update(value=''),
    )

with gr.Blocks(css=PARENT_BLOCK_CSS) as demo:
    state_chatbot = gr.State([])

    with gr.Column(elem_id='col_container'):
        gr.Markdown(f"## {TITLE}\n\n\n{ABSTRACT}")

        with gr.Accordion("Context Setting", open=False):
            context_txtbox = gr.Textbox(placeholder="Surrounding information to AI", label="Enter Context")
            hidden_txtbox = gr.Textbox(placeholder="", label="Order", visible=False)

        chatbot = gr.Chatbot(elem_id='chatbot', label="Stambecco")
        instruction_txtbox = gr.Textbox(placeholder="What do you want to say to AI?", label="Instruction")
        with gr.Row():
            cancel_btn = gr.Button(value="Cancel")
            reset_btn = gr.Button(value="Reset")

        with gr.Accordion("Helper Buttons", open=False):
            gr.Markdown(f"`Continue` lets AI to complete the previous incomplete answers. `Summarize` lets AI to summarize the conversations so far.")
            continue_txtbox = gr.Textbox(value=SPECIAL_STRS["continue"], visible=False)
            summrize_txtbox = gr.Textbox(value=SPECIAL_STRS["summarize"], visible=False)

            continue_btn = gr.Button(value="Continue")
            summarize_btn = gr.Button(value="Summarize")

        gr.Markdown("#### Examples")
        for _, (category, examples) in enumerate(DEFAULT_EXAMPLES.items()):
            with gr.Accordion(category, open=False):
                if category == "Identity":
                    for item in examples:
                        with gr.Accordion(item["title"], open=False):
                            gr.Examples(
                                examples=item["examples"],
                                inputs=[
                                    hidden_txtbox, context_txtbox, instruction_txtbox
                                ],
                                label=None
                            )
                else:
                    for item in examples:
                        with gr.Accordion(item["title"], open=False):
                            gr.Examples(
                                examples=item["examples"],
                                inputs=[
                                    hidden_txtbox, instruction_txtbox
                                ],
                                label=None
                            )

        gr.Markdown(f"{BOTTOM_LINE}")


    send_event = instruction_txtbox.submit(
        chat_stream, 
        [context_txtbox, instruction_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox],
    )
    reset_event = instruction_txtbox.submit(
        reset_textbox, 
        [], 
        [instruction_txtbox],
    )
    
    continue_event = continue_btn.click(
        chat_stream, 
        [context_txtbox, continue_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox],
    )
    reset_continue_event = continue_btn.click(
        reset_textbox, 
        [], 
        [instruction_txtbox],
    )
    
    summarize_event = summarize_btn.click(
        chat_stream, 
        [context_txtbox, summrize_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox],
    )
    summarize_reset_event = summarize_btn.click(
        reset_textbox, 
        [], 
        [instruction_txtbox],
    )
    
    cancel_btn.click(
        None, None, None, 
        cancels=[
            send_event, continue_event, summarize_event
        ]
    )

    reset_btn.click(
        reset_everything,
        [context_txtbox, instruction_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox, instruction_txtbox],
        cancels=[
            send_event, continue_event, summarize_event
        ]            
    )    

demo.queue(
    concurrency_count=1,
    max_size=100,
).launch(
    max_threads=5,
    server_name="0.0.0.0",
    share=True
)