File size: 7,657 Bytes
0d694c7 905911f 0d694c7 905911f 0d694c7 2772e90 0d694c7 a7c8cc6 24b87ce 475968c 74904cf 77e2d5c 026f136 74904cf 0d694c7 026f136 0d694c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import logging
import json
import os
import datetime
import hashlib
import csv
import requests
import re
import html
import torch
import sys
import gc
from pygments.lexers import guess_lexer, ClassNotFound
import gradio as gr
from pygments import highlight
from pygments.lexers import guess_lexer,get_lexer_by_name
from pygments.formatters import HtmlFormatter
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
def reset_state():
return [], [], "Resettato"
def reset_textbox():
return gr.update(value=""),""
def cancel_outputing():
return "Cancellato"
def transfer_input(inputs):
textbox = reset_textbox()
return (
inputs,
gr.update(value=""),
gr.Button.update(visible=True),
)
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
for stop_word in stop_words:
if s.endswith(stop_word):
return True
for i in range(1, len(stop_word)):
if s.endswith(stop_word[:i]):
return True
return False
def generate_prompt_with_history(text, history, tokenizer, max_length=2048):
prompt = "Conversazione tra un umano e una IA. Baize è sviluppato da UCSD e Sun Yat-Sen University. [|Human|] [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0],x[1]) for x in history]
history.append("\n[|Human|]{}\n[|AI|]".format(text))
history_text = ""
flag = False
for x in history[::-1]:
if tokenizer(prompt+history_text+x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
history_text = x + history_text
flag = True
else:
break
if flag:
return prompt+history_text,tokenizer(prompt+history_text, return_tensors="pt")
else:
return None
#tokenizer = AutoTokenizer.from_pretrained("project-baize/baize-v2-7b")
#model = AutoModelForCausalLM.from_pretrained("project-baize/baize-v2-7b")
#tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
#model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B")
#tokenizer = AutoTokenizer.from_pretrained("dbmdz/electra-base-italian-xxl-cased-discriminator")
#model = AutoModelForCausalLM.from_pretrained("dbmdz/electra-base-italian-xxl-cased-discriminator")
#tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-headline-generation")
#model = AutoModelForCausalLM.from_pretrained("it5/it5-large-headline-generation")
#tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-cased")
#model = AutoModelForCausalLM.from_pretrained("dbmdz/bert-base-italian-cased")
#tokenizer = AutoTokenizer.from_pretrained("asi/gpt-fr-cased-small")
#model = AutoModelForCausalLM.from_pretrained("asi/gpt-fr-cased-small")
#tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
#model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
def load_tokenizer_and_model(base_model,load_8bit=False):
base_model = "EleutherAI/gpt-neo-1.3B"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast = False)
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
base_model,
#load_in_8bit=load_8bit,
#torch_dtype=torch.float16,
device_map="auto",
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
#if not load_8bit:
#model.half() # seems to fix bugs for some users.
model.eval()
return tokenizer,model,device
# Greedy Search
def greedy_search(input_ids: torch.Tensor,
model: torch.nn.Module,
tokenizer: transformers.PreTrainedTokenizer,
stop_words: list,
max_length: int,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 25) -> Iterator[str]:
generated_tokens = []
past_key_values = None
current_length = 1
for i in range(max_length):
with torch.no_grad():
if past_key_values is None:
outputs = model(input_ids)
else:
outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
logits = outputs.logits[:, -1, :]
past_key_values = outputs.past_key_values
# apply temperature
logits /= temperature
probs = torch.softmax(logits, dim=-1)
# apply top_p
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > top_p
probs_sort[mask] = 0.0
# apply top_k
#if top_k is not None:
# probs_sort1, _ = torch.topk(probs_sort, top_k)
# min_top_probs_sort = torch.min(probs_sort1, dim=-1, keepdim=True).values
# probs_sort = torch.where(probs_sort < min_top_probs_sort, torch.full_like(probs_sort, float(0.0)), probs_sort)
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
input_ids = torch.cat((input_ids, next_token), dim=-1)
generated_tokens.append(next_token[0].item())
text = tokenizer.decode(generated_tokens)
yield text
if any([x in text for x in stop_words]):
del past_key_values
del logits
del probs
del probs_sort
del probs_idx
del probs_sum
gc.collect()
return
def convert_to_markdown(text):
text = text.replace("$","$")
def replace_leading_tabs_and_spaces(line):
new_line = []
for char in line:
if char == "\t":
new_line.append("	")
elif char == " ":
new_line.append(" ")
else:
break
return "".join(new_line) + line[len(new_line):]
markdown_text = ""
lines = text.split("\n")
in_code_block = False
for line in lines:
if in_code_block is False and line.startswith("```"):
in_code_block = True
markdown_text += f"{line}\n"
elif in_code_block is True and line.startswith("```"):
in_code_block = False
markdown_text += f"{line}\n"
elif in_code_block:
markdown_text += f"{line}\n"
else:
line = replace_leading_tabs_and_spaces(line)
line = re.sub(r"^(#)", r"\\\1", line)
markdown_text += f"{line} \n"
return markdown_text
class State:
interrupted = False
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
shared_state = State() |