File size: 29,305 Bytes
7a7f105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
from ugatit.ops import *
from utils import *
from glob import glob
import time
from tensorflow.contrib.data import prefetch_to_device, shuffle_and_repeat, map_and_batch
import numpy as np

class UGATIT(object) :
    def __init__(self, sess, args):
        self.light = args.light

        if self.light :
            self.model_name = 'UGATIT_light'
        else :
            self.model_name = 'UGATIT'

        self.sess = sess
        self.phase = args.phase
        self.checkpoint_dir = args.checkpoint_dir
        self.result_dir = args.result_dir
        self.log_dir = args.log_dir
        self.dataset_name = args.dataset
        self.augment_flag = args.augment_flag

        self.epoch = args.epoch
        self.iteration = args.iteration
        self.decay_flag = args.decay_flag
        self.decay_epoch = args.decay_epoch

        self.gan_type = args.gan_type

        self.batch_size = args.batch_size
        self.print_freq = args.print_freq
        self.save_freq = args.save_freq

        self.init_lr = args.lr
        self.ch = args.ch

        """ Weight """
        self.adv_weight = args.adv_weight
        self.cycle_weight = args.cycle_weight
        self.identity_weight = args.identity_weight
        self.cam_weight = args.cam_weight
        self.ld = args.GP_ld
        self.smoothing = args.smoothing

        """ Generator """
        self.n_res = args.n_res

        """ Discriminator """
        self.n_dis = args.n_dis
        self.n_critic = args.n_critic
        self.sn = args.sn

        self.img_size = args.img_size
        self.img_ch = args.img_ch


        self.sample_dir = os.path.join(args.sample_dir, self.model_dir)
        check_folder(self.sample_dir)

        # self.trainA, self.trainB = prepare_data(dataset_name=self.dataset_name, size=self.img_size
        self.trainA_dataset = glob('./dataset/{}/*.*'.format(self.dataset_name + '/trainA'))
        self.trainB_dataset = glob('./dataset/{}/*.*'.format(self.dataset_name + '/trainB'))
        self.dataset_num = max(len(self.trainA_dataset), len(self.trainB_dataset))

        print()

        print("##### Information #####")
        print("# light : ", self.light)
        print("# gan type : ", self.gan_type)
        print("# dataset : ", self.dataset_name)
        print("# max dataset number : ", self.dataset_num)
        print("# batch_size : ", self.batch_size)
        print("# epoch : ", self.epoch)
        print("# iteration per epoch : ", self.iteration)
        print("# smoothing : ", self.smoothing)

        print()

        print("##### Generator #####")
        print("# residual blocks : ", self.n_res)

        print()

        print("##### Discriminator #####")
        print("# discriminator layer : ", self.n_dis)
        print("# the number of critic : ", self.n_critic)
        print("# spectral normalization : ", self.sn)

        print()

        print("##### Weight #####")
        print("# adv_weight : ", self.adv_weight)
        print("# cycle_weight : ", self.cycle_weight)
        print("# identity_weight : ", self.identity_weight)
        print("# cam_weight : ", self.cam_weight)

    ##################################################################################
    # Generator
    ##################################################################################

    def generator(self, x_init, reuse=False, scope="generator"):
        channel = self.ch
        with tf.variable_scope(scope, reuse=reuse) :
            x = conv(x_init, channel, kernel=7, stride=1, pad=3, pad_type='reflect', scope='conv')
            x = instance_norm(x, scope='ins_norm')
            x = relu(x)

            # Down-Sampling
            for i in range(2) :
                x = conv(x, channel*2, kernel=3, stride=2, pad=1, pad_type='reflect', scope='conv_'+str(i))
                x = instance_norm(x, scope='ins_norm_'+str(i))
                x = relu(x)

                channel = channel * 2

            # Down-Sampling Bottleneck
            for i in range(self.n_res):
                x = resblock(x, channel, scope='resblock_' + str(i))


            # Class Activation Map
            cam_x = global_avg_pooling(x)
            cam_gap_logit, cam_x_weight = fully_connected_with_w(cam_x, scope='CAM_logit')
            x_gap = tf.multiply(x, cam_x_weight)

            cam_x = global_max_pooling(x)
            cam_gmp_logit, cam_x_weight = fully_connected_with_w(cam_x, reuse=True, scope='CAM_logit')
            x_gmp = tf.multiply(x, cam_x_weight)


            cam_logit = tf.concat([cam_gap_logit, cam_gmp_logit], axis=-1)
            x = tf.concat([x_gap, x_gmp], axis=-1)

            x = conv(x, channel, kernel=1, stride=1, scope='conv_1x1')
            x = relu(x)

            heatmap = tf.squeeze(tf.reduce_sum(x, axis=-1))

            # Gamma, Beta block
            gamma, beta = self.MLP(x, reuse=reuse)

            # Up-Sampling Bottleneck
            for i in range(self.n_res):
                x = adaptive_ins_layer_resblock(x, channel, gamma, beta, smoothing=self.smoothing, scope='adaptive_resblock' + str(i))

            # Up-Sampling
            for i in range(2) :
                x = up_sample(x, scale_factor=2)
                x = conv(x, channel//2, kernel=3, stride=1, pad=1, pad_type='reflect', scope='up_conv_'+str(i))
                x = layer_instance_norm(x, scope='layer_ins_norm_'+str(i))
                x = relu(x)

                channel = channel // 2


            x = conv(x, channels=3, kernel=7, stride=1, pad=3, pad_type='reflect', scope='G_logit')
            x = tanh(x)

            return x, cam_logit, heatmap

    def MLP(self, x, use_bias=True, reuse=False, scope='MLP'):
        channel = self.ch * self.n_res

        if self.light :
            x = global_avg_pooling(x)

        with tf.variable_scope(scope, reuse=reuse):
            for i in range(2) :
                x = fully_connected(x, channel, use_bias, scope='linear_' + str(i))
                x = relu(x)


            gamma = fully_connected(x, channel, use_bias, scope='gamma')
            beta = fully_connected(x, channel, use_bias, scope='beta')

            gamma = tf.reshape(gamma, shape=[self.batch_size, 1, 1, channel])
            beta = tf.reshape(beta, shape=[self.batch_size, 1, 1, channel])

            return gamma, beta

    ##################################################################################
    # Discriminator
    ##################################################################################

    def discriminator(self, x_init, reuse=False, scope="discriminator"):
        D_logit = []
        D_CAM_logit = []
        with tf.variable_scope(scope, reuse=reuse) :
            local_x, local_cam, local_heatmap = self.discriminator_local(x_init, reuse=reuse, scope='local')
            global_x, global_cam, global_heatmap = self.discriminator_global(x_init, reuse=reuse, scope='global')

            D_logit.extend([local_x, global_x])
            D_CAM_logit.extend([local_cam, global_cam])

            return D_logit, D_CAM_logit, local_heatmap, global_heatmap

    def discriminator_global(self, x_init, reuse=False, scope='discriminator_global'):
        with tf.variable_scope(scope, reuse=reuse):
            channel = self.ch
            x = conv(x_init, channel, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_0')
            x = lrelu(x, 0.2)

            for i in range(1, self.n_dis - 1):
                x = conv(x, channel * 2, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_' + str(i))
                x = lrelu(x, 0.2)

                channel = channel * 2

            x = conv(x, channel * 2, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='conv_last')
            x = lrelu(x, 0.2)

            channel = channel * 2

            cam_x = global_avg_pooling(x)
            cam_gap_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, scope='CAM_logit')
            x_gap = tf.multiply(x, cam_x_weight)

            cam_x = global_max_pooling(x)
            cam_gmp_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, reuse=True, scope='CAM_logit')
            x_gmp = tf.multiply(x, cam_x_weight)

            cam_logit = tf.concat([cam_gap_logit, cam_gmp_logit], axis=-1)
            x = tf.concat([x_gap, x_gmp], axis=-1)

            x = conv(x, channel, kernel=1, stride=1, scope='conv_1x1')
            x = lrelu(x, 0.2)

            heatmap = tf.squeeze(tf.reduce_sum(x, axis=-1))


            x = conv(x, channels=1, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='D_logit')

            return x, cam_logit, heatmap

    def discriminator_local(self, x_init, reuse=False, scope='discriminator_local'):
        with tf.variable_scope(scope, reuse=reuse) :
            channel = self.ch
            x = conv(x_init, channel, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_0')
            x = lrelu(x, 0.2)

            for i in range(1, self.n_dis - 2 - 1):
                x = conv(x, channel * 2, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_' + str(i))
                x = lrelu(x, 0.2)

                channel = channel * 2

            x = conv(x, channel * 2, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='conv_last')
            x = lrelu(x, 0.2)

            channel = channel * 2

            cam_x = global_avg_pooling(x)
            cam_gap_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, scope='CAM_logit')
            x_gap = tf.multiply(x, cam_x_weight)

            cam_x = global_max_pooling(x)
            cam_gmp_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, reuse=True, scope='CAM_logit')
            x_gmp = tf.multiply(x, cam_x_weight)

            cam_logit = tf.concat([cam_gap_logit, cam_gmp_logit], axis=-1)
            x = tf.concat([x_gap, x_gmp], axis=-1)

            x = conv(x, channel, kernel=1, stride=1, scope='conv_1x1')
            x = lrelu(x, 0.2)

            heatmap = tf.squeeze(tf.reduce_sum(x, axis=-1))

            x = conv(x, channels=1, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='D_logit')

            return x, cam_logit, heatmap

    ##################################################################################
    # Model
    ##################################################################################

    def generate_a2b(self, x_A, reuse=False):
        out, cam, _ = self.generator(x_A, reuse=reuse, scope="generator_B")

        return out, cam

    def generate_b2a(self, x_B, reuse=False):
        out, cam, _ = self.generator(x_B, reuse=reuse, scope="generator_A")

        return out, cam

    def discriminate_real(self, x_A, x_B):
        real_A_logit, real_A_cam_logit, _, _ = self.discriminator(x_A, scope="discriminator_A")
        real_B_logit, real_B_cam_logit, _, _ = self.discriminator(x_B, scope="discriminator_B")

        return real_A_logit, real_A_cam_logit, real_B_logit, real_B_cam_logit

    def discriminate_fake(self, x_ba, x_ab):
        fake_A_logit, fake_A_cam_logit, _, _ = self.discriminator(x_ba, reuse=True, scope="discriminator_A")
        fake_B_logit, fake_B_cam_logit, _, _ = self.discriminator(x_ab, reuse=True, scope="discriminator_B")

        return fake_A_logit, fake_A_cam_logit, fake_B_logit, fake_B_cam_logit

    def gradient_panalty(self, real, fake, scope="discriminator_A"):
        if self.gan_type.__contains__('dragan'):
            eps = tf.random_uniform(shape=tf.shape(real), minval=0., maxval=1.)
            _, x_var = tf.nn.moments(real, axes=[0, 1, 2, 3])
            x_std = tf.sqrt(x_var)  # magnitude of noise decides the size of local region

            fake = real + 0.5 * x_std * eps

        alpha = tf.random_uniform(shape=[self.batch_size, 1, 1, 1], minval=0., maxval=1.)
        interpolated = real + alpha * (fake - real)

        logit, cam_logit, _, _ = self.discriminator(interpolated, reuse=True, scope=scope)


        GP = []
        cam_GP = []

        for i in range(2) :
            grad = tf.gradients(logit[i], interpolated)[0] # gradient of D(interpolated)
            grad_norm = tf.norm(flatten(grad), axis=1) # l2 norm

            # WGAN - LP
            if self.gan_type == 'wgan-lp' :
                GP.append(self.ld * tf.reduce_mean(tf.square(tf.maximum(0.0, grad_norm - 1.))))

            elif self.gan_type == 'wgan-gp' or self.gan_type == 'dragan':
                GP.append(self.ld * tf.reduce_mean(tf.square(grad_norm - 1.)))

        for i in range(2) :
            grad = tf.gradients(cam_logit[i], interpolated)[0] # gradient of D(interpolated)
            grad_norm = tf.norm(flatten(grad), axis=1) # l2 norm

            # WGAN - LP
            if self.gan_type == 'wgan-lp' :
                cam_GP.append(self.ld * tf.reduce_mean(tf.square(tf.maximum(0.0, grad_norm - 1.))))

            elif self.gan_type == 'wgan-gp' or self.gan_type == 'dragan':
                cam_GP.append(self.ld * tf.reduce_mean(tf.square(grad_norm - 1.)))


        return sum(GP), sum(cam_GP)

    def build_model(self):
        if self.phase == 'train' :
            self.lr = tf.placeholder(tf.float32, name='learning_rate')


            """ Input Image"""
            Image_Data_Class = ImageData(self.img_size, self.img_ch, self.augment_flag)

            trainA = tf.data.Dataset.from_tensor_slices(self.trainA_dataset)
            trainB = tf.data.Dataset.from_tensor_slices(self.trainB_dataset)


            gpu_device = '/gpu:0'
            trainA = trainA.apply(shuffle_and_repeat(self.dataset_num)).apply(map_and_batch(Image_Data_Class.image_processing, self.batch_size, num_parallel_batches=16, drop_remainder=True)).apply(prefetch_to_device(gpu_device, None))
            trainB = trainB.apply(shuffle_and_repeat(self.dataset_num)).apply(map_and_batch(Image_Data_Class.image_processing, self.batch_size, num_parallel_batches=16, drop_remainder=True)).apply(prefetch_to_device(gpu_device, None))


            trainA_iterator = trainA.make_one_shot_iterator()
            trainB_iterator = trainB.make_one_shot_iterator()

            self.domain_A = trainA_iterator.get_next()
            self.domain_B = trainB_iterator.get_next()

            """ Define Generator, Discriminator """
            x_ab, cam_ab = self.generate_a2b(self.domain_A) # real a
            x_ba, cam_ba = self.generate_b2a(self.domain_B) # real b

            x_aba, _ = self.generate_b2a(x_ab, reuse=True) # real b
            x_bab, _ = self.generate_a2b(x_ba, reuse=True) # real a

            x_aa, cam_aa = self.generate_b2a(self.domain_A, reuse=True) # fake b
            x_bb, cam_bb = self.generate_a2b(self.domain_B, reuse=True) # fake a

            real_A_logit, real_A_cam_logit, real_B_logit, real_B_cam_logit = self.discriminate_real(self.domain_A, self.domain_B)
            fake_A_logit, fake_A_cam_logit, fake_B_logit, fake_B_cam_logit = self.discriminate_fake(x_ba, x_ab)


            """ Define Loss """
            if self.gan_type.__contains__('wgan') or self.gan_type == 'dragan' :
                GP_A, GP_CAM_A = self.gradient_panalty(real=self.domain_A, fake=x_ba, scope="discriminator_A")
                GP_B, GP_CAM_B = self.gradient_panalty(real=self.domain_B, fake=x_ab, scope="discriminator_B")
            else :
                GP_A, GP_CAM_A  = 0, 0
                GP_B, GP_CAM_B = 0, 0

            G_ad_loss_A = (generator_loss(self.gan_type, fake_A_logit) + generator_loss(self.gan_type, fake_A_cam_logit))
            G_ad_loss_B = (generator_loss(self.gan_type, fake_B_logit) + generator_loss(self.gan_type, fake_B_cam_logit))

            D_ad_loss_A = (discriminator_loss(self.gan_type, real_A_logit, fake_A_logit) + discriminator_loss(self.gan_type, real_A_cam_logit, fake_A_cam_logit) + GP_A + GP_CAM_A)
            D_ad_loss_B = (discriminator_loss(self.gan_type, real_B_logit, fake_B_logit) + discriminator_loss(self.gan_type, real_B_cam_logit, fake_B_cam_logit) + GP_B + GP_CAM_B)

            reconstruction_A = L1_loss(x_aba, self.domain_A) # reconstruction
            reconstruction_B = L1_loss(x_bab, self.domain_B) # reconstruction

            identity_A = L1_loss(x_aa, self.domain_A)
            identity_B = L1_loss(x_bb, self.domain_B)

            cam_A = cam_loss(source=cam_ba, non_source=cam_aa)
            cam_B = cam_loss(source=cam_ab, non_source=cam_bb)

            Generator_A_gan = self.adv_weight * G_ad_loss_A
            Generator_A_cycle = self.cycle_weight * reconstruction_B
            Generator_A_identity = self.identity_weight * identity_A
            Generator_A_cam = self.cam_weight * cam_A


            Generator_B_gan = self.adv_weight * G_ad_loss_B
            Generator_B_cycle = self.cycle_weight * reconstruction_A
            Generator_B_identity = self.identity_weight * identity_B
            Generator_B_cam = self.cam_weight * cam_B


            Generator_A_loss = Generator_A_gan + Generator_A_cycle + Generator_A_identity + Generator_A_cam
            Generator_B_loss = Generator_B_gan + Generator_B_cycle + Generator_B_identity + Generator_B_cam


            Discriminator_A_loss = self.adv_weight * D_ad_loss_A
            Discriminator_B_loss = self.adv_weight * D_ad_loss_B

            self.Generator_loss = Generator_A_loss + Generator_B_loss + regularization_loss('generator')
            self.Discriminator_loss = Discriminator_A_loss + Discriminator_B_loss + regularization_loss('discriminator')


            """ Result Image """
            self.fake_A = x_ba
            self.fake_B = x_ab

            self.real_A = self.domain_A
            self.real_B = self.domain_B


            """ Training """
            t_vars = tf.trainable_variables()
            G_vars = [var for var in t_vars if 'generator' in var.name]
            D_vars = [var for var in t_vars if 'discriminator' in var.name]

            self.G_optim = tf.train.AdamOptimizer(self.lr, beta1=0.5, beta2=0.999).minimize(self.Generator_loss, var_list=G_vars)
            self.D_optim = tf.train.AdamOptimizer(self.lr, beta1=0.5, beta2=0.999).minimize(self.Discriminator_loss, var_list=D_vars)


            """" Summary """
            self.all_G_loss = tf.summary.scalar("Generator_loss", self.Generator_loss)
            self.all_D_loss = tf.summary.scalar("Discriminator_loss", self.Discriminator_loss)

            self.G_A_loss = tf.summary.scalar("G_A_loss", Generator_A_loss)
            self.G_A_gan = tf.summary.scalar("G_A_gan", Generator_A_gan)
            self.G_A_cycle = tf.summary.scalar("G_A_cycle", Generator_A_cycle)
            self.G_A_identity = tf.summary.scalar("G_A_identity", Generator_A_identity)
            self.G_A_cam = tf.summary.scalar("G_A_cam", Generator_A_cam)

            self.G_B_loss = tf.summary.scalar("G_B_loss", Generator_B_loss)
            self.G_B_gan = tf.summary.scalar("G_B_gan", Generator_B_gan)
            self.G_B_cycle = tf.summary.scalar("G_B_cycle", Generator_B_cycle)
            self.G_B_identity = tf.summary.scalar("G_B_identity", Generator_B_identity)
            self.G_B_cam = tf.summary.scalar("G_B_cam", Generator_B_cam)

            self.D_A_loss = tf.summary.scalar("D_A_loss", Discriminator_A_loss)
            self.D_B_loss = tf.summary.scalar("D_B_loss", Discriminator_B_loss)

            self.rho_var = []
            for var in tf.trainable_variables():
                if 'rho' in var.name:
                    self.rho_var.append(tf.summary.histogram(var.name, var))
                    self.rho_var.append(tf.summary.scalar(var.name + "_min", tf.reduce_min(var)))
                    self.rho_var.append(tf.summary.scalar(var.name + "_max", tf.reduce_max(var)))
                    self.rho_var.append(tf.summary.scalar(var.name + "_mean", tf.reduce_mean(var)))

            g_summary_list = [self.G_A_loss, self.G_A_gan, self.G_A_cycle, self.G_A_identity, self.G_A_cam,
                              self.G_B_loss, self.G_B_gan, self.G_B_cycle, self.G_B_identity, self.G_B_cam,
                              self.all_G_loss]

            g_summary_list.extend(self.rho_var)
            d_summary_list = [self.D_A_loss, self.D_B_loss, self.all_D_loss]

            self.G_loss = tf.summary.merge(g_summary_list)
            self.D_loss = tf.summary.merge(d_summary_list)

        else :
            """ Test """
            self.test_domain_A = tf.placeholder(tf.float32, [1, self.img_size, self.img_size, self.img_ch], name='test_domain_A')
            self.test_domain_B = tf.placeholder(tf.float32, [1, self.img_size, self.img_size, self.img_ch], name='test_domain_B')


            self.test_fake_B, _ = self.generate_a2b(self.test_domain_A)
            self.test_fake_A, _ = self.generate_b2a(self.test_domain_B)


    def train(self):
        # initialize all variables
        tf.global_variables_initializer().run()

        # saver to save model
        self.saver = tf.train.Saver()

        # summary writer
        self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_dir, self.sess.graph)


        # restore check-point if it exits
        could_load, checkpoint_counter = self.load(self.checkpoint_dir)
        if could_load:
            start_epoch = (int)(checkpoint_counter / self.iteration)
            start_batch_id = checkpoint_counter - start_epoch * self.iteration
            counter = checkpoint_counter
            print(" [*] Load SUCCESS")
        else:
            start_epoch = 0
            start_batch_id = 0
            counter = 1
            print(" [!] Load failed...")

        # loop for epoch
        start_time = time.time()
        past_g_loss = -1.
        lr = self.init_lr
        for epoch in range(start_epoch, self.epoch):
            # lr = self.init_lr if epoch < self.decay_epoch else self.init_lr * (self.epoch - epoch) / (self.epoch - self.decay_epoch)
            if self.decay_flag :
                #lr = self.init_lr * pow(0.5, epoch // self.decay_epoch)
                lr = self.init_lr if epoch < self.decay_epoch else self.init_lr * (self.epoch - epoch) / (self.epoch - self.decay_epoch)
            for idx in range(start_batch_id, self.iteration):
                train_feed_dict = {
                    self.lr : lr
                }

                # Update D
                _, d_loss, summary_str = self.sess.run([self.D_optim,
                                                        self.Discriminator_loss, self.D_loss], feed_dict = train_feed_dict)
                self.writer.add_summary(summary_str, counter)

                # Update G
                g_loss = None
                if (counter - 1) % self.n_critic == 0 :
                    batch_A_images, batch_B_images, fake_A, fake_B, _, g_loss, summary_str = self.sess.run([self.real_A, self.real_B,
                                                                                                            self.fake_A, self.fake_B,
                                                                                                            self.G_optim,
                                                                                                            self.Generator_loss, self.G_loss], feed_dict = train_feed_dict)
                    self.writer.add_summary(summary_str, counter)
                    past_g_loss = g_loss

                # display training status
                counter += 1
                if g_loss == None :
                    g_loss = past_g_loss
                print("Epoch: [%2d] [%5d/%5d] time: %4.4f d_loss: %.8f, g_loss: %.8f" % (epoch, idx, self.iteration, time.time() - start_time, d_loss, g_loss))

                if np.mod(idx+1, self.print_freq) == 0 :
                    save_images(batch_A_images, [self.batch_size, 1],
                                './{}/real_A_{:03d}_{:05d}.png'.format(self.sample_dir, epoch, idx+1))
                    # save_images(batch_B_images, [self.batch_size, 1],
                    #             './{}/real_B_{:03d}_{:05d}.png'.format(self.sample_dir, epoch, idx+1))

                    # save_images(fake_A, [self.batch_size, 1],
                    #             './{}/fake_A_{:03d}_{:05d}.png'.format(self.sample_dir, epoch, idx+1))
                    save_images(fake_B, [self.batch_size, 1],
                                './{}/fake_B_{:03d}_{:05d}.png'.format(self.sample_dir, epoch, idx+1))

                if np.mod(idx + 1, self.save_freq) == 0:
                    self.save(self.checkpoint_dir, counter)



            # After an epoch, start_batch_id is set to zero
            # non-zero value is only for the first epoch after loading pre-trained model
            start_batch_id = 0

            # save model for final step
            self.save(self.checkpoint_dir, counter)

    @property
    def model_dir(self):
        n_res = str(self.n_res) + 'resblock'
        n_dis = str(self.n_dis) + 'dis'

        if self.smoothing :
            smoothing = '_smoothing'
        else :
            smoothing = ''

        if self.sn :
            sn = '_sn'
        else :
            sn = ''

        return "{}_{}_{}_{}_{}_{}_{}_{}_{}_{}{}{}".format(self.model_name, self.dataset_name,
                                                         self.gan_type, n_res, n_dis,
                                                         self.n_critic,
                                                         self.adv_weight, self.cycle_weight, self.identity_weight, self.cam_weight, sn, smoothing)

    def save(self, checkpoint_dir, step):
        checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)

        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)

        self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step)

    def load(self, checkpoint_dir):
        print(" [*] Reading checkpoints...")
        checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)

        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
            self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
            counter = int(ckpt_name.split('-')[-1])
            print(" [*] Success to read {}".format(ckpt_name))
            return True, counter
        else:
            print(" [*] Failed to find a checkpoint")
            return False, 0

    def test(self):
        tf.global_variables_initializer().run()
        test_A_files = glob('./dataset/{}/*.*'.format(self.dataset_name + '/testA'))
        test_B_files = glob('./dataset/{}/*.*'.format(self.dataset_name + '/testB'))

        self.saver = tf.train.Saver()
        could_load, checkpoint_counter = self.load(self.checkpoint_dir)
        self.result_dir = os.path.join(self.result_dir, self.model_dir)
        check_folder(self.result_dir)

        if could_load :
            print(" [*] Load SUCCESS")
        else :
            print(" [!] Load failed...")

        # write html for visual comparison
        index_path = os.path.join(self.result_dir, 'index.html')
        index = open(index_path, 'w')
        index.write("<html><body><table><tr>")
        index.write("<th>name</th><th>input</th><th>output</th></tr>")

        for sample_file  in test_A_files : # A -> B
            print('Processing A image: ' + sample_file)
            sample_image = np.asarray(load_test_data(sample_file, size=self.img_size))
            image_path = os.path.join(self.result_dir,'{0}'.format(os.path.basename(sample_file)))

            fake_img = self.sess.run(self.test_fake_B, feed_dict = {self.test_domain_A : sample_image})
            save_images(fake_img, [1, 1], image_path)

            index.write("<td>%s</td>" % os.path.basename(image_path))

            index.write("<td><img src='%s' width='%d' height='%d'></td>" % (sample_file if os.path.isabs(sample_file) else (
                '../..' + os.path.sep + sample_file), self.img_size, self.img_size))
            index.write("<td><img src='%s' width='%d' height='%d'></td>" % (image_path if os.path.isabs(image_path) else (
                '../..' + os.path.sep + image_path), self.img_size, self.img_size))
            index.write("</tr>")

        for sample_file  in test_B_files : # B -> A
            print('Processing B image: ' + sample_file)
            sample_image = np.asarray(load_test_data(sample_file, size=self.img_size))
            image_path = os.path.join(self.result_dir,'{0}'.format(os.path.basename(sample_file)))

            fake_img = self.sess.run(self.test_fake_A, feed_dict = {self.test_domain_B : sample_image})

            save_images(fake_img, [1, 1], image_path)
            index.write("<td>%s</td>" % os.path.basename(image_path))
            index.write("<td><img src='%s' width='%d' height='%d'></td>" % (sample_file if os.path.isabs(sample_file) else (
                    '../..' + os.path.sep + sample_file), self.img_size, self.img_size))
            index.write("<td><img src='%s' width='%d' height='%d'></td>" % (image_path if os.path.isabs(image_path) else (
                    '../..' + os.path.sep + image_path), self.img_size, self.img_size))
            index.write("</tr>")
        index.close()