File size: 13,658 Bytes
7a7f105
 
 
 
 
 
 
 
 
 
1b9c487
7a7f105
 
 
 
 
 
 
 
 
1b9c487
7a7f105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b9c487
 
7a7f105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b9c487
7a7f105
 
 
 
1b9c487
7a7f105
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from ugatit.ops import *
from ugatit.utils import *
from glob import glob
import time
from tensorflow.contrib.data import prefetch_to_device, shuffle_and_repeat, map_and_batch
import numpy as np
from ugatit.utils import *

class UgatitTest:

    def __init__(self, sess, checkpoint_dir):
        self.light = False

        if self.light:
            self.model_name = 'UGATIT_light'
        else:
            self.model_name = 'UGATIT'

        self.sess = sess
        self.phase = 'test'
        self.checkpoint_dir = checkpoint_dir
        self.result_dir = 'results'
        self.log_dir = 'logs'
        self.dataset_name = 'selfie2anime'
        self.augment_flag = True

        self.epoch = 100
        self.iteration = 10000
        self.decay_flag = True
        self.decay_epoch = 50

        self.gan_type = 'lsgan'

        self.batch_size = 1
        self.print_freq = 1000
        self.save_freq = 1000

        self.init_lr = 0.0001
        self.ch = 64

        """ Weight """
        self.adv_weight = 1
        self.cycle_weight = 10
        self.identity_weight = 10
        self.cam_weight = 1000
        self.ld = 10
        self.smoothing = True

        """ Generator """
        self.n_res = 4

        """ Discriminator """
        self.n_dis = 6
        self.n_critic = 1
        self.sn = True

        self.img_size = 256
        self.img_ch = 3

        #self.sample_dir = os.path.join('/home/hylee/cartoon/UGATIT/samples', self.model_dir)
        #check_folder(self.sample_dir)

        # self.trainA, self.trainB = prepare_data(dataset_name=self.dataset_name, size=self.img_size
        self.trainA_dataset = glob('./dataset/{}/*.*'.format(self.dataset_name + '/trainA'))
        self.trainB_dataset = glob('./dataset/{}/*.*'.format(self.dataset_name + '/trainB'))
        self.dataset_num = max(len(self.trainA_dataset), len(self.trainB_dataset))

        print()

        print("##### Information #####")
        print("# light : ", self.light)
        print("# gan type : ", self.gan_type)
        print("# dataset : ", self.dataset_name)
        print("# max dataset number : ", self.dataset_num)
        print("# batch_size : ", self.batch_size)
        print("# epoch : ", self.epoch)
        print("# iteration per epoch : ", self.iteration)
        print("# smoothing : ", self.smoothing)

        print()

        print("##### Generator #####")
        print("# residual blocks : ", self.n_res)

        print()

        print("##### Discriminator #####")
        print("# discriminator layer : ", self.n_dis)
        print("# the number of critic : ", self.n_critic)
        print("# spectral normalization : ", self.sn)

        print()

        print("##### Weight #####")
        print("# adv_weight : ", self.adv_weight)
        print("# cycle_weight : ", self.cycle_weight)
        print("# identity_weight : ", self.identity_weight)
        print("# cam_weight : ", self.cam_weight)

    ##################################################################################
    # Generator
    ##################################################################################

    def generator(self, x_init, reuse=False, scope="generator"):
        channel = self.ch
        with tf.variable_scope(scope, reuse=reuse) :
            x = conv(x_init, channel, kernel=7, stride=1, pad=3, pad_type='reflect', scope='conv')
            x = instance_norm(x, scope='ins_norm')
            x = relu(x)

            # Down-Sampling
            for i in range(2) :
                x = conv(x, channel*2, kernel=3, stride=2, pad=1, pad_type='reflect', scope='conv_'+str(i))
                x = instance_norm(x, scope='ins_norm_'+str(i))
                x = relu(x)

                channel = channel * 2

            # Down-Sampling Bottleneck
            for i in range(self.n_res):
                x = resblock(x, channel, scope='resblock_' + str(i))


            # Class Activation Map
            cam_x = global_avg_pooling(x)
            cam_gap_logit, cam_x_weight = fully_connected_with_w(cam_x, scope='CAM_logit')
            x_gap = tf.multiply(x, cam_x_weight)

            cam_x = global_max_pooling(x)
            cam_gmp_logit, cam_x_weight = fully_connected_with_w(cam_x, reuse=True, scope='CAM_logit')
            x_gmp = tf.multiply(x, cam_x_weight)


            cam_logit = tf.concat([cam_gap_logit, cam_gmp_logit], axis=-1)
            x = tf.concat([x_gap, x_gmp], axis=-1)

            x = conv(x, channel, kernel=1, stride=1, scope='conv_1x1')
            x = relu(x)

            heatmap = tf.squeeze(tf.reduce_sum(x, axis=-1))

            # Gamma, Beta block
            gamma, beta = self.MLP(x, reuse=reuse)

            # Up-Sampling Bottleneck
            for i in range(self.n_res):
                x = adaptive_ins_layer_resblock(x, channel, gamma, beta, smoothing=self.smoothing, scope='adaptive_resblock' + str(i))

            # Up-Sampling
            for i in range(2) :
                x = up_sample(x, scale_factor=2)
                x = conv(x, channel//2, kernel=3, stride=1, pad=1, pad_type='reflect', scope='up_conv_'+str(i))
                x = layer_instance_norm(x, scope='layer_ins_norm_'+str(i))
                x = relu(x)

                channel = channel // 2


            x = conv(x, channels=3, kernel=7, stride=1, pad=3, pad_type='reflect', scope='G_logit')
            x = tanh(x)

            return x, cam_logit, heatmap

    def MLP(self, x, use_bias=True, reuse=False, scope='MLP'):
        channel = self.ch * self.n_res

        if self.light :
            x = global_avg_pooling(x)

        with tf.variable_scope(scope, reuse=reuse):
            for i in range(2) :
                x = fully_connected(x, channel, use_bias, scope='linear_' + str(i))
                x = relu(x)


            gamma = fully_connected(x, channel, use_bias, scope='gamma')
            beta = fully_connected(x, channel, use_bias, scope='beta')

            gamma = tf.reshape(gamma, shape=[self.batch_size, 1, 1, channel])
            beta = tf.reshape(beta, shape=[self.batch_size, 1, 1, channel])

            return gamma, beta

    ##################################################################################
    # Discriminator
    ##################################################################################

    def discriminator(self, x_init, reuse=False, scope="discriminator"):
        D_logit = []
        D_CAM_logit = []
        with tf.variable_scope(scope, reuse=reuse) :
            local_x, local_cam, local_heatmap = self.discriminator_local(x_init, reuse=reuse, scope='local')
            global_x, global_cam, global_heatmap = self.discriminator_global(x_init, reuse=reuse, scope='global')

            D_logit.extend([local_x, global_x])
            D_CAM_logit.extend([local_cam, global_cam])

            return D_logit, D_CAM_logit, local_heatmap, global_heatmap

    def discriminator_global(self, x_init, reuse=False, scope='discriminator_global'):
        with tf.variable_scope(scope, reuse=reuse):
            channel = self.ch
            x = conv(x_init, channel, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_0')
            x = lrelu(x, 0.2)

            for i in range(1, self.n_dis - 1):
                x = conv(x, channel * 2, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_' + str(i))
                x = lrelu(x, 0.2)

                channel = channel * 2

            x = conv(x, channel * 2, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='conv_last')
            x = lrelu(x, 0.2)

            channel = channel * 2

            cam_x = global_avg_pooling(x)
            cam_gap_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, scope='CAM_logit')
            x_gap = tf.multiply(x, cam_x_weight)

            cam_x = global_max_pooling(x)
            cam_gmp_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, reuse=True, scope='CAM_logit')
            x_gmp = tf.multiply(x, cam_x_weight)

            cam_logit = tf.concat([cam_gap_logit, cam_gmp_logit], axis=-1)
            x = tf.concat([x_gap, x_gmp], axis=-1)

            x = conv(x, channel, kernel=1, stride=1, scope='conv_1x1')
            x = lrelu(x, 0.2)

            heatmap = tf.squeeze(tf.reduce_sum(x, axis=-1))


            x = conv(x, channels=1, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='D_logit')

            return x, cam_logit, heatmap

    def discriminator_local(self, x_init, reuse=False, scope='discriminator_local'):
        with tf.variable_scope(scope, reuse=reuse) :
            channel = self.ch
            x = conv(x_init, channel, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_0')
            x = lrelu(x, 0.2)

            for i in range(1, self.n_dis - 2 - 1):
                x = conv(x, channel * 2, kernel=4, stride=2, pad=1, pad_type='reflect', sn=self.sn, scope='conv_' + str(i))
                x = lrelu(x, 0.2)

                channel = channel * 2

            x = conv(x, channel * 2, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='conv_last')
            x = lrelu(x, 0.2)

            channel = channel * 2

            cam_x = global_avg_pooling(x)
            cam_gap_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, scope='CAM_logit')
            x_gap = tf.multiply(x, cam_x_weight)

            cam_x = global_max_pooling(x)
            cam_gmp_logit, cam_x_weight = fully_connected_with_w(cam_x, sn=self.sn, reuse=True, scope='CAM_logit')
            x_gmp = tf.multiply(x, cam_x_weight)

            cam_logit = tf.concat([cam_gap_logit, cam_gmp_logit], axis=-1)
            x = tf.concat([x_gap, x_gmp], axis=-1)

            x = conv(x, channel, kernel=1, stride=1, scope='conv_1x1')
            x = lrelu(x, 0.2)

            heatmap = tf.squeeze(tf.reduce_sum(x, axis=-1))

            x = conv(x, channels=1, kernel=4, stride=1, pad=1, pad_type='reflect', sn=self.sn, scope='D_logit')

            return x, cam_logit, heatmap

    def generate_a2b(self, x_A, reuse=False):
        out, cam, _ = self.generator(x_A, reuse=reuse, scope="generator_B")

        return out, cam

    def generate_b2a(self, x_B, reuse=False):
        out, cam, _ = self.generator(x_B, reuse=reuse, scope="generator_A")

        return out, cam
    def build_model(self):
        self.test_domain_A = tf.placeholder(tf.float32, [1, self.img_size, self.img_size, self.img_ch], name='test_domain_A')
        self.test_domain_B = tf.placeholder(tf.float32, [1, self.img_size, self.img_size, self.img_ch], name='test_domain_B')

        self.test_fake_B, _ = self.generate_a2b(self.test_domain_A)
        self.test_fake_A, _ = self.generate_b2a(self.test_domain_B)

    @property
    def model_dir(self):
        n_res = str(self.n_res) + 'resblock'
        n_dis = str(self.n_dis) + 'dis'

        if self.smoothing:
            smoothing = '_smoothing'
        else:
            smoothing = ''

        if self.sn:
            sn = '_sn'
        else:
            sn = ''

        return "{}_{}_{}_{}_{}_{}_{}_{}_{}_{}{}{}".format(self.model_name, self.dataset_name,
                                                          self.gan_type, n_res, n_dis,
                                                          self.n_critic,
                                                          self.adv_weight, self.cycle_weight, self.identity_weight,
                                                          self.cam_weight, sn, smoothing)

    def load(self, checkpoint_dir):
        print(" [*] Reading checkpoints...")
        checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)

        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
            self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
            counter = int(ckpt_name.split('-')[-1])
            print(" [*] Success to read {}".format(ckpt_name))
            return True, counter
        else:
            print(" [*] Failed to find a checkpoint")
            return False, 0

    def loadModel(self):
        tf.global_variables_initializer().run(session=self.sess)

        self.saver = tf.train.Saver()
        could_load, checkpoint_counter = self.load(self.checkpoint_dir)
        self.result_dir = os.path.join(self.result_dir, self.model_dir)
        check_folder(self.result_dir)

        if could_load:
            print(" [*] Load SUCCESS")
        else:
            print(" [!] Load failed...")

    def test(self, sample_file):
         # A -> B
        print('Processing A image: ' + sample_file)
        sample_image = np.asarray(load_test_data(sample_file, size=self.img_size))
        image_path = os.path.join(self.result_dir,'{0}'.format(os.path.basename(sample_file)))

        fake_img = self.sess.run(self.test_fake_B, feed_dict = {self.test_domain_A : sample_image})
        save_images(fake_img, [1, 1], image_path)

        return image_path


gan = None
def main_test(img_path, checkpoint_dir):
    # open session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    global gan
    if gan is None:
        gan = UgatitTest(sess, checkpoint_dir)
        # build graph
        gan.build_model()
        # show network architecture
        show_all_variables()

        gan.loadModel()

    result = gan.test(img_path)
    print(" [*] Test finished!")
    print(result)
    return os.path.abspath(result)

if __name__ == '__main__':
    main_test('/home/hylee/cartoon/myp2c/imgs/src/im4.jpg')