- .idea/.gitignore +8 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/mySeg2.iml +8 -0
- .idea/vcs.xml +6 -0
- 1212.md +0 -75
- README.md +7 -6
- app.py +115 -11
- config.json +0 -110
- image1.jpg +0 -0
- labels.txt +18 -19
- person-1.jpg +0 -0
- person-2.jpg +0 -0
- person-3.jpg +0 -0
- person-4.jpg +0 -0
- person-5.jpg +0 -0
- preprocessor_config.json +0 -18
- pytorch_model.bin +0 -3
- tf_model.h5 +0 -3
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/mySeg2.iml" filepath="$PROJECT_DIR$/.idea/mySeg2.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/mySeg2.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="inheritedJdk" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
1212.md
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
tags:
|
4 |
-
- vision
|
5 |
-
- image-segmentation
|
6 |
-
datasets:
|
7 |
-
- cityscapes
|
8 |
-
widget:
|
9 |
-
- src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png
|
10 |
-
example_title: road
|
11 |
-
---
|
12 |
-
|
13 |
-
# SegFormer (b5-sized) model fine-tuned on CityScapes
|
14 |
-
|
15 |
-
SegFormer model fine-tuned on CityScapes at resolution 640x1280. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
|
16 |
-
|
17 |
-
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
|
18 |
-
|
19 |
-
## Model description
|
20 |
-
|
21 |
-
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
|
22 |
-
|
23 |
-
## Intended uses & limitations
|
24 |
-
|
25 |
-
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
|
26 |
-
|
27 |
-
### How to use
|
28 |
-
|
29 |
-
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
30 |
-
|
31 |
-
```python
|
32 |
-
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
33 |
-
from PIL import Image
|
34 |
-
import requests
|
35 |
-
|
36 |
-
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
|
37 |
-
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
|
38 |
-
|
39 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
40 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
41 |
-
|
42 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
43 |
-
outputs = model(**inputs)
|
44 |
-
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
45 |
-
```
|
46 |
-
|
47 |
-
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
|
48 |
-
|
49 |
-
### License
|
50 |
-
|
51 |
-
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
|
52 |
-
|
53 |
-
### BibTeX entry and citation info
|
54 |
-
|
55 |
-
```bibtex
|
56 |
-
@article{DBLP:journals/corr/abs-2105-15203,
|
57 |
-
author = {Enze Xie and
|
58 |
-
Wenhai Wang and
|
59 |
-
Zhiding Yu and
|
60 |
-
Anima Anandkumar and
|
61 |
-
Jose M. Alvarez and
|
62 |
-
Ping Luo},
|
63 |
-
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
64 |
-
Transformers},
|
65 |
-
journal = {CoRR},
|
66 |
-
volume = {abs/2105.15203},
|
67 |
-
year = {2021},
|
68 |
-
url = {https://arxiv.org/abs/2105.15203},
|
69 |
-
eprinttype = {arXiv},
|
70 |
-
eprint = {2105.15203},
|
71 |
-
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
|
72 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
|
73 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
74 |
-
}
|
75 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
-
|
2 |
---
|
3 |
-
title:
|
4 |
-
emoji:
|
5 |
colorFrom: blue
|
6 |
-
colorTo:
|
7 |
sdk: gradio
|
8 |
-
sdk_version:
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
-
---
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: MyImageSegmentation
|
3 |
+
emoji: 🏢
|
4 |
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.44.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,15 +1,119 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
11 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
12 |
|
13 |
-
|
14 |
-
outputs = model(**inputs)
|
15 |
-
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
+
|
10 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
+
"mattmdjaga/segformer_b2_clothes"
|
12 |
+
)
|
13 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
+
"mattmdjaga/segformer_b2_clothes"
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def ade_palette():
|
19 |
+
"""ADE20K palette that maps each class to RGB values."""
|
20 |
+
return [
|
21 |
+
[255, 0, 0],
|
22 |
+
[255, 94, 0],
|
23 |
+
[255, 187, 0],
|
24 |
+
[255, 228, 0],
|
25 |
+
[171, 242, 0],
|
26 |
+
[29, 219, 22],
|
27 |
+
[0, 216, 255],
|
28 |
+
[0, 84, 255],
|
29 |
+
[1, 0, 255],
|
30 |
+
[95, 0, 255],
|
31 |
+
[255, 0, 221],
|
32 |
+
[255, 0, 127],
|
33 |
+
[152, 0, 0],
|
34 |
+
[153, 112, 0],
|
35 |
+
[107, 153, 0],
|
36 |
+
[0, 51, 153],
|
37 |
+
[63, 0, 153],
|
38 |
+
[153, 0, 133]
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
labels_list = []
|
43 |
+
|
44 |
+
with open(r"labels.txt", "r") as fp:
|
45 |
+
for line in fp:
|
46 |
+
labels_list.append(line[:-1])
|
47 |
+
|
48 |
+
colormap = np.asarray(ade_palette())
|
49 |
+
|
50 |
+
|
51 |
+
def label_to_color_image(label):
|
52 |
+
if label.ndim != 2:
|
53 |
+
raise ValueError("Expect 2-D input label")
|
54 |
+
|
55 |
+
if np.max(label) >= len(colormap):
|
56 |
+
raise ValueError("label value too large.")
|
57 |
+
return colormap[label]
|
58 |
+
|
59 |
+
|
60 |
+
def draw_plot(pred_img, seg):
|
61 |
+
fig = plt.figure(figsize=(20, 15))
|
62 |
+
|
63 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
64 |
+
|
65 |
+
plt.subplot(grid_spec[0])
|
66 |
+
plt.imshow(pred_img)
|
67 |
+
plt.axis("off")
|
68 |
+
LABEL_NAMES = np.asarray(labels_list)
|
69 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
70 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
71 |
+
|
72 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
73 |
+
ax = plt.subplot(grid_spec[1])
|
74 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
75 |
+
ax.yaxis.tick_right()
|
76 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
77 |
+
plt.xticks([], [])
|
78 |
+
ax.tick_params(width=0.0, labelsize=25)
|
79 |
+
return fig
|
80 |
+
|
81 |
+
|
82 |
+
def sepia(input_img):
|
83 |
+
input_img = Image.fromarray(input_img)
|
84 |
+
|
85 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
86 |
+
outputs = model(**inputs)
|
87 |
+
logits = outputs.logits
|
88 |
+
|
89 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
90 |
+
logits = tf.image.resize(
|
91 |
+
logits, input_img.size[::-1]
|
92 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
93 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
94 |
+
|
95 |
+
color_seg = np.zeros(
|
96 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
97 |
+
) # height, width, 3
|
98 |
+
for label, color in enumerate(colormap):
|
99 |
+
color_seg[seg.numpy() == label, :] = color
|
100 |
+
|
101 |
+
# Show image + mask
|
102 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
103 |
+
pred_img = pred_img.astype(np.uint8)
|
104 |
+
|
105 |
+
fig = draw_plot(pred_img, seg)
|
106 |
+
return fig
|
107 |
+
|
108 |
|
109 |
+
demo = gr.Interface(
|
110 |
+
fn=sepia,
|
111 |
+
inputs=gr.Image(shape=(400, 600)),
|
112 |
+
outputs=["plot"],
|
113 |
+
examples=[
|
114 |
+
"person-1.jpg","person-2.jpg","person-3.jpg","person-4.jpg", "person-5.jpg",],
|
115 |
+
allow_flagging="never",
|
116 |
+
)
|
117 |
|
|
|
|
|
118 |
|
119 |
+
demo.launch()
|
|
|
|
config.json
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"SegformerForSemanticSegmentation"
|
4 |
-
],
|
5 |
-
"attention_probs_dropout_prob": 0.0,
|
6 |
-
"classifier_dropout_prob": 0.1,
|
7 |
-
"decoder_hidden_size": 256,
|
8 |
-
"depths": [
|
9 |
-
2,
|
10 |
-
2,
|
11 |
-
2,
|
12 |
-
2
|
13 |
-
],
|
14 |
-
"downsampling_rates": [
|
15 |
-
1,
|
16 |
-
4,
|
17 |
-
8,
|
18 |
-
16
|
19 |
-
],
|
20 |
-
"drop_path_rate": 0.1,
|
21 |
-
"hidden_act": "gelu",
|
22 |
-
"hidden_dropout_prob": 0.0,
|
23 |
-
"hidden_sizes": [
|
24 |
-
32,
|
25 |
-
64,
|
26 |
-
160,
|
27 |
-
256
|
28 |
-
],
|
29 |
-
"id2label": {
|
30 |
-
"0": "road",
|
31 |
-
"1": "sidewalk",
|
32 |
-
"2": "building",
|
33 |
-
"3": "wall",
|
34 |
-
"4": "fence",
|
35 |
-
"5": "pole",
|
36 |
-
"6": "traffic light",
|
37 |
-
"7": "traffic sign",
|
38 |
-
"8": "vegetation",
|
39 |
-
"9": "terrain",
|
40 |
-
"10": "sky",
|
41 |
-
"11": "person",
|
42 |
-
"12": "rider",
|
43 |
-
"13": "car",
|
44 |
-
"14": "truck",
|
45 |
-
"15": "bus",
|
46 |
-
"16": "train",
|
47 |
-
"17": "motorcycle",
|
48 |
-
"18": "bicycle"
|
49 |
-
},
|
50 |
-
"image_size": 224,
|
51 |
-
"initializer_range": 0.02,
|
52 |
-
"label2id": {
|
53 |
-
"bicycle": 18,
|
54 |
-
"building": 2,
|
55 |
-
"bus": 15,
|
56 |
-
"car": 13,
|
57 |
-
"fence": 4,
|
58 |
-
"motorcycle": 17,
|
59 |
-
"person": 11,
|
60 |
-
"pole": 5,
|
61 |
-
"rider": 12,
|
62 |
-
"road": 0,
|
63 |
-
"sidewalk": 1,
|
64 |
-
"sky": 10,
|
65 |
-
"terrain": 9,
|
66 |
-
"traffic light": 6,
|
67 |
-
"traffic sign": 7,
|
68 |
-
"train": 16,
|
69 |
-
"truck": 14,
|
70 |
-
"vegetation": 8,
|
71 |
-
"wall": 3
|
72 |
-
},
|
73 |
-
"layer_norm_eps": 1e-06,
|
74 |
-
"mlp_ratios": [
|
75 |
-
4,
|
76 |
-
4,
|
77 |
-
4,
|
78 |
-
4
|
79 |
-
],
|
80 |
-
"model_type": "segformer",
|
81 |
-
"num_attention_heads": [
|
82 |
-
1,
|
83 |
-
2,
|
84 |
-
5,
|
85 |
-
8
|
86 |
-
],
|
87 |
-
"num_channels": 3,
|
88 |
-
"num_encoder_blocks": 4,
|
89 |
-
"patch_sizes": [
|
90 |
-
7,
|
91 |
-
3,
|
92 |
-
3,
|
93 |
-
3
|
94 |
-
],
|
95 |
-
"reshape_last_stage": true,
|
96 |
-
"sr_ratios": [
|
97 |
-
8,
|
98 |
-
4,
|
99 |
-
2,
|
100 |
-
1
|
101 |
-
],
|
102 |
-
"strides": [
|
103 |
-
4,
|
104 |
-
2,
|
105 |
-
2,
|
106 |
-
2
|
107 |
-
],
|
108 |
-
"torch_dtype": "float32",
|
109 |
-
"transformers_version": "4.12.0.dev0"
|
110 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image1.jpg
DELETED
Binary file (193 kB)
|
|
labels.txt
CHANGED
@@ -1,19 +1,18 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
bicycle
|
|
|
1 |
+
background
|
2 |
+
hat
|
3 |
+
hair
|
4 |
+
sunglasses
|
5 |
+
upper-clothes
|
6 |
+
skirt
|
7 |
+
pants
|
8 |
+
dress
|
9 |
+
belt
|
10 |
+
left-shoe
|
11 |
+
right-shoe
|
12 |
+
face
|
13 |
+
left-leg
|
14 |
+
right-leg
|
15 |
+
left-arm
|
16 |
+
right-arm
|
17 |
+
bag
|
18 |
+
scarf
|
|
person-1.jpg
ADDED
person-2.jpg
ADDED
person-3.jpg
ADDED
person-4.jpg
ADDED
person-5.jpg
ADDED
preprocessor_config.json
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"do_normalize": true,
|
3 |
-
"do_resize": true,
|
4 |
-
"feature_extractor_type": "SegformerFeatureExtractor",
|
5 |
-
"image_mean": [
|
6 |
-
0.485,
|
7 |
-
0.456,
|
8 |
-
0.406
|
9 |
-
],
|
10 |
-
"image_std": [
|
11 |
-
0.229,
|
12 |
-
0.224,
|
13 |
-
0.225
|
14 |
-
],
|
15 |
-
"reduce_labels": false,
|
16 |
-
"resample": 2,
|
17 |
-
"size": 512
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ffe3494e1339abf7af09a13c914e72c3d2745e2f315eba1fd2b1dee15b7a73ed
|
3 |
-
size 14957601
|
|
|
|
|
|
|
|
tf_model.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0b07d5d1354b5e4bc6ad579e7350a240c170b0dea3c781bf917019932174569c
|
3 |
-
size 15151028
|
|
|
|
|
|
|
|